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Abstract

Has the emergence of information technology changed the structure of employment and earn-
ings in the US? We propose a new index of occupation-level IT intensity and document several
long-term changes in the occupational landscape over the past decades. Using Census and US
KLEMS micro-data, we show that: (i) the bulk of productivity growth after 1950 is concen-
trated in IT intensive sectors; (ii) the share of workers in IT jobs has expanded significantly,
with little or no pause and IT jobs enjoy a large and growing earnings premium, even after
controlling for general task requirements (e.g., cognitive, non-routine); and (iii) the rise of
the IT intensive employment share is closely associated with declines in the manufacturing
employment share. While earnings premia for college-educated and cognitive/non-routine
workers have flattened in the aggregate since 2000, we show that they continued growing in
IT intensive jobs and that these jobs have played a key role in accounting for the surge of
high tech service labor productivity. We also use our IT intensity index to estimate industry-
specific elasticities of substitution between IT and non-IT intensive labor, finding values of
1.6 in manufacturing and 1.3 in services. Finally, we revisit a long-standing question about
the relationship between technological progress and productivity and provide evidence that
occupation-level IT intensity is positively associated with output growth, especially in the
services sector.
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1 Introduction

Understanding large scale sectoral reallocation is essential for identifying the factors of techno-
logical change and growth (Baumol, 1967; Kuznets, 1973), such as the decline in the agricultural
employment share (Gollin et al., 2002), the rise of the service economy (Buera and Kaboski, 2012;
Buera et al., 2015), and the rise in job polarization (Barany and Siegel, 2017). Leading theories of
structural transformation focus on either demand-side mechanisms, which introduce heterogeneity
in income elasticities (Kongsamut et al., 2001), or supply-side mechanisms, which highlight het-
erogeneity in sectoral growth rates (Ngai and Pissarides, 2007; Acemoglu and Guerrieri, 2008).1

The United States and other developed countries have experienced a large reallocation of
workers from manufacturing to the services sector. This well-documented shift (Herrendorf et al.,
2014) has coincided quite closely with the rise of technology-intensive investments (see Figure 1).2

Of course, the fact that aggregate employment shares and measures of technological diffusion are
so highly correlated tells us little about causality. To understand the impact that information
technology (IT), such as the introduction of personal computers in the 1970s and the spread of
the internet in the 1990s, has had on structural transformation, we introduce a new measurement
strategy that ranks jobs based on their IT intensity, and use the measure to study how the rise of
IT-intensive jobs has potentially accelerated the pace of structural transformation.

[INSERT FIGURE 1 HERE]

In the first part of the paper, we use scores from the O*NET at the five-digit occupation level
to measure the prevalence of IT-intensive tasks in different jobs. Drawing primarily on micro-data
from the Census Bureau, we document three novel stylized facts. First, value added per hour
worked has surged in IT-intensive sectors between 1950 and 2010, particularly within services
where it rose almost fivefold.3 While IT-intensive manufacturing and services have grown rapidly,
low IT sectors have displayed more sluggish growth. Second, we show that the share of workers in
IT-intensive job has grown, with little or no pause, from roughly 34% in 1970 to 44% in 2015. We
also document that over the same period the raw earnings premium in these jobs has also grown

1Combining both of these mechanisms has also received attention; see, for example, Buera and Kaboski (2009).
Boppart (2014) and Comin et al. (2015) reconcile these mechanisms by modifying preferences.

2These results are consistent with anecdotal evidence from, for example, a LinkedIn survey of employers in 2016
that found 22 out of the 25 skills that recruiters are most interested in are technology and information technology
related; https://blog.linkedin.com/2016/01/12/the-25-skills-that-can-get-you-hired-in-2016

3As we discuss below, we follow the approach suggested by Herrendorf et al. (2013) by focusing on value added
through occupational tasks, rather than on gross output.
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from 48% to 66%. These findings are consistent with a broader literature about information
technology and firm productivity (Bresnahan et al., 2002; Brynjolfsson and Hitt, 2003; Bloom
et al., 2012; Tambe and Hitt, 2012). We also contrast our results with recent evidence about the
flattening of the college premium (Valletta, 2016) and the slowing demand for cognitive and non-
routine (“C/NR”) skills (Beaudry et al., 2016). Despite the flattening of returns in the broader
cross-section, there continues to be a steady rise in the college and C/NR premia among IT workers.
Third, we exploit geographic variation and find that, between 1980 and 2015, a percentage point
(pp) rise in the IT employment share is associated with a 0.35pp decline in the manufacturing
employment share under our preferred specification. This conditional correlation is identified from
decadal within-county variation in employment shares, after controlling for demographic shifts and
average wages. The fact that the conditional correlation holds even after controlling for average
wages is consistent with models of structural transformation that emphasize productivity growth
over income effects (Ngai and Pissarides, 2007).

These facts are especially interesting in light of the ongoing debate on the causes and conse-
quences of structural transformation in the United States. Herrendorf et al. (2015) and Buera
et al. (2015) argue that, over the past decades, differences in technological progress across sectors
have been key for structural transformation in the United States. Moreover, as pointed out by
Duernecker et al. (2017), both labor productivity growth and the expansion in the employment
share of services have continued at a fairly strong pace. This is surprising because the services sec-
tor has lower output per worker than manufacturing: models that posit wage equalization predict
that increases in expenditures on labor-intensive services would eventually be reflected in lower
aggregate productivity growth (Baumol, 1967).4

Our index allows us to quantify aggregate labor inputs using jobs with different IT intensity.
In the second part of the paper, we use these measures to explore how substitutable high and
low IT intensity occupations are in production.5 We perform this analysis separately for the

4As Baumol wrote in in his 1967 article, “...if wages and productivity in the progressive sector both go up 2 per
cent per year, costs there will not rise at all. On the other hand, if in the non progressive sector productivity is
constant, every rise in wages must yield a corresponding addition to costs-a two per cent cumulative rise in wages
means that, year in year out, costs must be two per cent above those of the preceding year. Thus, the very progress
of the technologically progressive sectors inevitably adds to the costs of the technologically unchanging sectors of
the economy, unless somehow the labor markets in these areas can be sealed off and wages held absolutely constant,
a most unlikely possibility.”

5We formally estimate elasticities of substitution between IT and non-IT labor below. For anecdotal evidence,
consider the instance where a mere 14 IT-intensive jobs in a manufacturing plant in Austria are enough to produce
500,000 tons of steel a year:
https://www.bloomberg.com/news/articles/2017-06-21/how-just-14-people-make-500-000-tons-of-steel-a-year-
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manufacturing and services sectors, re-examining the large sectoral shifts in employment and
wages through the lens of a simple production technology with imperfect substitution of IT and
non-IT labor inputs. This model delivers estimable relationships linking price changes to quantity
changes, which we then use to quantify the elasticity of substitution between IT and non-IT
labor inputs.6 Our preferred estimates, which correct for dynamic reallocation across sectors,
indicate that the elasticity of substitution between IT and non-IT intensive labor inputs is 1.6
in manufacturing and 1.3 in services. We obtain quantitatively similar results when we use the
standard estimation approach outlined by, for example, Autor et al. (2008)

Our work also connects with two broad debates about the impact of technology on labor
markets and productivity. The first debate examines the decline in productivity growth over
the past fifteen years. While some prominent researchers have argued that productivity might
simply be mismeasured due to the difficulty of quantifying output in technology-intensive activities
(Brynjolfsson and McAfee, 2011; Mokyr, 2014; Bryne et al., 2013; Feldstein, 2015; Hatzius and
Dawsey, 2015; Bryne et al., 2016), Syverson (2017) suggests that mismeasurement is an unlikely
explanation and Brynjolfsson et al. (2017) argue that new technologies (e.g., artificial intelligence)
might just have delayed effects on the real economy since it takes time for the benefits to diffuse.7

In the last part of the paper, we provide direct evidence that IT-related productivity effects are
present in sectoral real output and value added. Our empirical approach follows that of Acemoglu
et al. (2014), who examine productivity growth across manufacturing industries and find that
it was surprisingly low in IT-using industries. Using our occupation-level IT intensity measure,
rather than measures of IT capital, we replicate the analysis of of Acemoglu et al. (2014) for
manufacturing and extend it to the services sector. Our estimates suggest that occupation-level
IT-intensity is positively associated with output growth, especially in services. This finding points
towards an important dimension of heterogeneity—namely, that significant productivity growth
may have recently come from IT-intensive jobs in the services sector.

The second debate we contribute to highlights growing concerns about automation and income
inequality. For example, Harrigan et al. (2016) use administrative data from France to show that

in-austria.
6While traditional SBTC contributions have focused on college attainment as a proxy for skill (Katz and

Murphy, 1992; Autor et al., 2006) and/or heterogeneity between non-routine & cognitively intensive occupations
(Autor et al., 2008; Autor and Dorn, 2013), an important feature of the SBTC intellectual foundation is that it
can accommodate alternative, relevant sources of heterogeneity, such as age (Card and Lemieux, 2001) and gender
(Acemoglu et al., 2004). See Acemoglu and Autor (2011) for a survey.

7See an interesting discussion of related issues here: https://www.wsj.com/articles/silicon-valley-doesnt-believe-
u-s-productivity-is-down-1437100700
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information technology and technological change have played a major role in facilitating job po-
larization.8 However, they focus specifically on technical managers, engineers and technicians (the
“techies”), rather than information technology workers as defined by occupational task descrip-
tions, to study polarization in the distribution of jobs. In a similar vein, while some prominent
experts have argued that a whopping 47% of U.S. employment is at risk of being displaced by
automation (Frey and Osborne, 2013), Acemoglu and Restrepo (2017b) show that continuing
automation is consistent with balanced growth, creating new tasks and raising the demand for
heterogeneous skills. Even in the presence of short-run displacement of jobs (Acemoglu and Re-
strepo, 2017a), which clearly has welfare and distributional implications (Eden and Gaggl, 2017),
what matters most for structural transformation is the long-run demand for specific tasks and
skills. In this sense, our paper contributes towards a better understanding of how information
technology shapes the sorting of workers across occupations and the associated returns.

Our findings are also consistent with key findings in Duernecker et al. (2017). These authors
suggest that, while Baumol’s disease may have somewhat slowed aggregate GDP growth, its effects
are incrementally smaller and will be limited in the future because most of the growth will continue
to come from sustained demand for the output of high productivity services sectors. Our focus
on the growing importance of IT jobs highlights a specific supply-side mechanism that drives
higher productivity growth in the services sector. Identifying these occupational shifts will be
important in further developing the current models (e.g., Buera and Kaboski (2012), Herrendorf
et al. (2013), Boppart (2014), and Comin et al. (2015)) and characterizing the next stage of
structural transformation—the move towards information services.

The structure of the paper is as follows. Section 2 introduces the data and measurement
strategy. Section 3 employs our IT intensity measure to document three stylized facts about the
rise of technology intensive jobs. Section 4 introduces a production-based framework to estimate
the elasticity of substitution between IT intensive and non-IT intensive jobs. Section 5 uses our
IT intensity measure to assess the role of occupation-level technological change for productivity,
revisiting questions related to the Solow paradox. Section 6 concludes.

8Their contribution relates to findings in Autor et al. (2003) and Autor and Dorn (2013) in that information and
communications technology largely complement cognitive and non-routine skills. Below we also provide evidence
suggesting that this may be true, as we show that the earnings premium for college and cognitive/non-routine skills
after 2000 has been increasing for information technology workers (but not for non-IT workers).
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2 Data and Measurement

2.1 Sources

Occupational Tasks: Measuring IT Intensity.—We draw primarily from O*NET, which is the
new companion to the well-known Dictionary of Occupational Titles (DOT) used in prior work
(Autor et al., 2003), as our source of data on occupational tasks, skills, and work environment
characteristics. O*NET is a survey that the U.S. Department of Labor administers to a random
sample of U.S. workers within detailed occupations. Respondents answer questions on an ordinal
scale that measures both the importance of, for example, a task, and the frequency at which
different tasks occur on the job. Following prior work by Autor et al. (2013b), we take the
product of the importance and frequency weights (when available) to generate an overall intensity
for each sub-index task. To match these indices to micro-data in our baseline sample, we use
the Occupational Employment Statistics (OES) national time series and construct employment-
weighted intensities for tasks, skills, and knowledge at the five digit occupation level.

Individual Micro-data: Employment and Wages.—Our primary results draw from the Census
Bureau’s Decennial Census between 1970 and 2000 and the American Community Survey (ACS)
between 2005-2007 (“2005”) and 2013-2015 (“2015”) accessed through the Integrated Public Use
Microdata (IPUMS) data portal at the University of Minnesota. Occupations are measured at a
five-digit level of aggregation, which we match with our IT index from O*NET. We also draw on
the annual Current Population Survey (CPS) for several exercises that allow us to have higher
frequency variation in the number of IT and non-IT workers. In both cases, we mitigate concerns
about partial attachment to the labor market by restricting our samples to full-time workers
between age 20 and 65, with over $5,000 in annual labor income, at least 20 weeks worked per
year, and over $2 real hourly wages. We deflate nominal variables using the 2010 real personal
consumption expenditure index.

Industry Classifications.—We define the services sector based on the following industries: util-
ities, transportation and warehousing, wholesale and retail trade, information, finance and in-
surance, real estate, professional / scientific / technical services, management of companies and
enterprises, administrative and support / waste and remediation services, educational services,
healthcare and social assistance, arts / entertainment / recreation, accommodation and food ser-
vices, and other personal services.9 We define the manufacturing sector based on NAICS 31-33

9https://www.census.gov/econ/services.html
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codes (non-durable and durable manufacturing) and include agriculture and mining.10

2.2 Measuring Occupation-Level IT Intensity

To gauge the intensity of IT tasks at the occupation level (aggregated at the five-digit level in
our baseline), we draw on indices from the O*NET skill, task and knowledge measures, including:
knowledge about computers and electronics, activities interacting with computers, programming,
systems evaluation skills, quality control analysis, operations analysis, activities with updating and
using relevant knowledge, technology design, activities analyzing data and information, activities
processing information, knowledge with engineering and technology, activities managing material
resources (see Appendix A.1 for a description of each category).

After computing the sum of these sub-indices between 2004 and 2016 (see Appendix A.3.2 for
details about time variation of these indices), we construct an average and time-invariant occu-
pation intensity score and standardize it (so that the score has mean zero and standard deviation
of unity).11 We then classify occupations as high IT if they have a standardized score above zero.
We harmonize Census occupation classifications from 1970 to 2015 to the five-digit SOC-level such
that 8,124,303 of 19,266,737 (42.17%) individuals are classified as working in a high IT intensity
job.12 Figure 2 plots the relationship between occupation-level earnings and standardized IT in-
tensity scores, weighted by employment. The data suggests that a standard deviation increment
in IT intensity is associated with a 0.83% increase in annual earnings. Appendix A.3.1 compares
and contrasts our measure of IT intensity with alternative proxies of workers’ skills, controlling
for measures of cognitive / non-routine and social skills used by Autor et al. (2003) and Deming
(2017), respectively.

[INSERT FIGURE 2 HERE]
10Our results are robust to including the education and healthcare sectors as low skilled in the services sectors

and/or excluding agriculture and mining from the manufacturing sector. These latter sub-sectors make little
difference because employment shares are quite small in agriculture and mining. Similarly, while education and
healthcare clearly contain groups of highly skilled workers, many are not. Our classification on high and low tech
services sectors is influenced by the Census (https://www.bls.gov/opub/mlr/2005/07/art6full.pdf), but we also
have examined college attainment across these sectors.

11Hagerty and Land (2007) find that using equal weights over subset variables for these types of indices provides
the greatest robustness and accuracy. The issue of potentially different weights is relatively minor when all are
measures are positively correlated.

12We take advantage of the fact that IPUMS makes “OCC2010” available, which we manually cross-walk into
SOC2010 codes at the five-digit level. Appendix A.1 provides a comparison of the earnings and employment premia
under alternative IT intensity definitions based on jobs being either above the mean (baseline) or above the median
of the standardized score. Despite some differences, the correlations between the earnings and employment premia
under the two definitions are 0.83 and 0.90, respectively.
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A key assumption is that our classification of occupations, based on average IT intensity
between 2004 and 2016, is time-invariant. This means that we can extrapolate our scores of
occupational IT intensity as far back as 1970.13 While we cannot directly test the validity of
this assumption, we gauge its robustness by checking whether occupational IT intensity scores in
2004-2005 have explanatory power for scores in 2015-2016. We find significant persistence with a
coefficient of 1.069 (p-value = 0.00) and a R-squared of 0.79. The close match between occupational
IT intensity in the early 2000s and a decade later does not guarantee that the same would hold
over the 1980s and 1990s, but the very strong correlation indicates that relative occupational IT
task intensities appear not to change dramatically over time.

2.3 Descriptive Statistics

In Table 1, we document stark gender and college attainment differences between workers in high
and low IT-intensity jobs. For example, in 1970 the shares of males and college degree workers in
IT-intensive jobs were, respectively, 76% and 33%. This can be contrasted to a share of only 59%
males and 4% college graduates in jobs with lower IT intensity. However, these differences have
narrowed: for 2010-2015 the shares of males and college grads were 54% and 58% in IT-intensive
jobs, versus 52% and 18% in non-IT-intensive jobs.

We also see a large increase in the IT intensive hourly wage premium, growing from $6.68/hour
in 1980 to $12.55/hour in 2013 (an 87% increase). Controlling for college attainment reduces the
premium to $5.05/hour in 1980 and $9.11/hour in 2010-2015 (a 65% increase), consistent with
the complementarity between skills and computer technologies (Autor et al., 1998). However, the
hourly wage premium still remains large. Interestingly, the increase in the hourly wage premium
occurred concurrently with, and in spite of, an increase in the hours-worked IT premium. For
example, high IT job workers allocated 8.3% more time to market activity in 1980 than workers
in low IT jobs, but this gap grew to 11% by 2010-2015.14 Over this same time period, the IT
earnings premium grew from 46.4% to 66.4%. The fact that the earnings premium is rising faster
than the hours premium for IT workers suggests that demand is outpacing supply. Appendix A.2
examines how the distribution of employment, hourly wages, and inequality varies across high and
low IT intensity jobs. While the distribution of the hourly wage for IT jobs is shifted significantly

13For an interesting discussion of related issues see (Atalay et al., 2017).
14We have also cross-walked our IT index into the American Time Use Survey (ATUS) and found that, using

their more reliable diary-based time use reporting method, IT workers allocate roughly 21 more minutes per day
to work activities, which totals nearly 128 more hours worked per year.
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to the right, there is interestingly little statistical difference in within-group inequality between
high IT and low IT jobs.

[INSERT TABLE 1 HERE]

3 Structural Change and the Emergence of Technology

and Information Services

3.1 Heterogeneity in Industry Labor Productivity

How has productivity evolved over time in the manufacturing and services sectors? Although
the manufacturing sector exhibits greater total factor productivity (Herrendorf et al., 2015), we
document the presence of significant within-industry heterogeneity in labor productivity between
high and low IT intensity sectors. We measure sectoral labor productivity as logged value added
per hour worked.

We draw on two datasets to examine the evolution of value added. First, we use the U.S.
KLEMS 2013 release to obtain sectoral total hours worked and value added from 1950 to 2010,
which we deflate using an annual GDP deflator (normalized to 2009). Second, we use our Cen-
sus micro-data samples for 2000, 2006-2008, and 2013-2015 to produce a weighted z-score of IT
intensity at a three-digit NAICS industry level, classifying sectors with an average z-score above
zero as high IT intensity; see Appendix A.3.3 for further details on the data construction and list
of sectors used in the classifications. Figure 5 displays the results of our analysis. First, labor
productivity in high IT intensity manufacturing and services are both higher than labor produc-
tivity in low IT sectors. In particular, the IT services sector’s productivity appears to catch up
with high tech manufacturing after 1980. Second, the long-term increase in value added per hour
is highest in the IT intensive services, which grow from a value of $9.43 per hour worked in 1950
to over $57 in 2010 (a fivefold increase). In contrast, IT intensive manufacturing’s value added
grows from $19.4 per hour worked in 1950 to $83 in 2010 (a threefold increase).

3.2 Heterogeneity in Employment and Earnings across Occupations

Having motivated our emphasis on high-tech services, we next focus on occupation heterogeneity
within both the manufacturing and services sectors. Using micro-data between 1970 and 2015
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from the Census Bureau, we begin our analysis by plotting the earnings and employment premia
between high and low IT-intensive jobs. Figure 6 documents the evolution of the earnings premium
for IT-intensive jobs in both manufacturing and services sector. Whereas the earnings premium
grew from 50.4% to 63.6% in the manufacturing sector between 1970 and 2013 (a 26.2% rise), it
grew from 48.3% to 67.2% in the services sector (a 40% rise). We find very similar patterns when
working with hourly wages and residual hourly wages, which purges variation in demographic
characteristics and educational attainment.

Turning towards differences in employment, Figure 6 also documents the employment premium
for IT-intensive jobs. While manufacturing had only a few IT-intensive jobs in the 1970s, with an
employment premium of -0.84, the share of such jobs grew dramatically over time to an employment
premium of -0.23 (a 70% rise) by the end of our sample period. Over the same period, the economy
also experienced a significant growth in the share of IT-intensive jobs in the services sector, from an
employment premium of -0.53 to -0.18 (a rise of 64.6%). These results suggest that, in the face of
the well-known decline in the manufacturing employment share (Herrendorf et al., 2014), any job
growth (or retention) in the manufacturing sector must have been primarily in IT-intensive jobs.
Figure 20 in Appendix A.3.4 presents evidence consistent with this corollary: using the Current
Population Survey (CPS), we show that the employment share of IT jobs in the manufacturing
sector remained quite stable, despite the rapid decline of the overall manufacturing employment
share.

[INSERT FIGURE 20 HERE]

Appendix A.3.4 replicates these earnings premia using a combination of the CPS and OES
datasets to illustrate that these premia are comparable in other standard sources. While there are
some differences in levels since the level of aggregation differs (three-digit occupation in CPS and
six-digit in OES), the qualitative patterns are the same. We also present robustness exercises using
a different classification of IT-intensive jobs, namely a more restrictive scheme introduced by the
Census Bureau that focuses heavily on science and engineering jobs (Hecker, 2005). We have also
estimated these premia controlling for demographic characteristics, such as age and education,
and found that our patterns still stand strong. We also find similar results using hourly wages,
but defer to annual earnings since hours worked are not reported in 1970.

We now examine how these patterns relate with recent results from Beaudry et al. (2014; 2016)
about the decline in demand for non-routine and cognitive (“C/NR”) skills and from Valletta
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(2016) about the flattening of the college premium.15 In particular, has the flattening taken place
for all workers, or is the flattening driven by non-IT jobs? After replicating their aggregate results
using the Census, we find evidence of the latter. Beginning with educational attainment, Panel
A in Figure 7 plots the overall college premium (red) with the college premium for IT workers
(blue). Importantly, while all are larger and increasing, the premium is increasing especially for IT
workers. For example, between 1970 and 1990, the college premium grew by 9% overall, whereas
it grew by 16% for IT workers. Between 1990 and 2015, the college premium grew by 19% overall,
but it grew by a remarkable 26% for IT workers. During these years, the supply of IT workers
also rapidly increased, suggesting that the supply of labor was not keeping up with the increasing
demand for IT skills in the labor market (see Appendix A.3.5 and Figure 25 for these employment
shares).

Turning towards C/NR skills, Panel B in Figure 7 plots the overall C/NR premium (red) with
the C/NR premium for IT workers (blue). Unlike the college premium, there is a closer association
between the overall C/NR and IT-C/NR premia since the majority of occupations considered high
C/NR are also high IT. Despite similarity between the two premia in 1970 bordering around 40%,
the premia began diverging in the 1990s. In particular, the IT premium among C/NR jobs begins
outpacing the overall premium by over 5%. For example, while the overall C/NR premium grew
by 14% between 1970 and 1990, it grew by 18% among IT workers. Moreover, the overall C/NR
grew by 40% between 1990 and 2015, whereas it grew by 45% among IT workers.

[INSERT FIGURE 7 HERE]

While these plots may appear inconsistent with the evidence in Beaudry et al. (2016) and
Valletta (2016) on the declining return to C/NR and college skills post-2000, they are not—they
merely highlight an important source of heterogeneity. Turning away from the longer-run phe-
nomena captured in Figure 7, we use annual data from the American Community Survey between
2005 and 2016 to study the returns to IT jobs among the subset of college degree workers and
high C/NR jobs. Using these data, we estimate regressions of logged hourly wages on an indicator
for high IT intensity, college attainment (and, separately, high C/NR skills), and their interaction
for each year, conditional on controls. Figure 8 plots the estimated interaction between (i) IT and

15Beaudry et al. (2016) argue that, because of the housing boom in the early 2000s, the rise of employment
in the construction and other complementary sectors masked these downward employment trends (Charles et al.,
2016). It was not until the Great Recession that these labor market changes became apparent. Autor (2017) points
out, however, that the decline in the earnings premium actually began in the 1990s, which is even more of a puzzle
since IT investment was still large at the time.
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college attainment and (ii) IT and C/NR skills. it is apparent that the hourly wage premium for
college workers who also work in IT intensive jobs has grown from 4% to 6.5% between 2005 and
2016. Similarly, the hourly wage premium for workers in IT intensive jobs requiring C/NR tasks
has grown from -2% to 2%. While our estimates exhibit large confidence intervals, the coefficients
point towards a rise in the premium associated with college and C/NR skills for high IT workers.
In this sense, although the average return to college and C/NR skills might be declining overall as
Beaudry et al. (2016) and Valletta (2016) point out, there is no evidence that this occurs in the
subset of IT intensive jobs.

[INSERT FIGURE 8 HERE]

3.3 Comparison to Alternative Measures

Large differences in earnings, employment and value added across sectors become apparent when
we classify occupations using our IT intensity measure. We validate the robustness of these findings
in several ways. As mentioned in Section 2, our IT intensity measure defines an occupation as
high IT intensity if its standardized z-score index is above zero (the mean value). We have also
experimented with other ways of clustering occupations into high and low IT intensity groups,
using both Ward’s algorithm and K-means/medians. Treating total IT intensity as the outcome
variable, these clustering methods did not produce classifications that were significantly different
from our baseline approach. Hence, we use our mean z-score approach for its transparency and
stability. We define high IT based on values higher than the median z-score. Our results are
robust to this alternative definition (see Appendix A.1.2).

Next, we benchmark our results using an industry-level measure of technology prevalence
introduced by Hecker (2005). This measure is based on the proportion of scientists, engineers,
and technicians at an industry, rather than occupation, level. Hence, Hecker (2005) focuses on a
sub-sample of science, technology, engineering, and math (STEM) workers who account for 7% of
the jobs in the sample, whereas our IT intensity measure captures a broader set of technology jobs,
accounting for 42% in the sample. To contrast these measures, we consider regressions of logged
annual earnings and hours worked on indicators of, respectively, high IT intensity or Hecker’s high
tech industry, controlling for individual covariates.

Table 2 documents these results for the 2000, 2005-07, and 2013-15 sample years.16 These raw

16Unfortunately, we cannot include earlier years since the NAICS codes are not available for them. While we
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comparison suggests that the earnings premium in IT intensive jobs is 63%, whereas workers in
high tech jobs have 55% higher earnings relative to their counterparts. Once we add controls, the
conditional correlations imply premia of 43% and 34%, respectively. We find smaller differences
between annual hours worked, amounting to 8% for our IT intensity measure versus 5% for the
high tech-based measure, conditional on controls. One limitation of our comparison is that the
public Census micro-data does not contain enough information to cover all of the sectors that
Hecker (2005) classifies as high tech. Nonetheless these conditional correlations illustrate that
these measures capture similar, but not identical, features of earnings and hours premia in the
data. Table 7 in Appendix A.3.6 also presents a comparison with an additional and less expansive
measure of information technology prevalence within jobs introduced by Beckhusen (2016).

[INSERT TABLE 2 HERE]

We also draw on the Bureau of Economic Analysis (BEA) measures of IT capital expenditures
from 2000 to 2015 and examine their correlation with the IT employment share. This check is
motivated by evidence of complementarity between high-skilled workers and technology (Griliches,
1969; Autor et al., 1998). Since IT capital expenditures are measured at an industry-level, whereas
IT jobs are measured at an occupation-level, we compute the share of IT workers within each three-
digit industry-level weighted by the number of individuals observed in each cell. Consistent with
prior evidence about the complementarity between skilled workers and capital, Figure 3 shows that
the two have a 0.46 correlation and that a one percentage point rise in the share of IT workers at
the industry-level is associated with a 2.89% rise in capital expenditures.

[INSERT FIGURE 3 HERE]

While our measure of IT task intensity is clearly detecting meaningful differences across occu-
pations, one concern is that it may be simply correlated with other occupation-specific character-
istics, such as non-routine and cognitive features as defined in Autor and Dorn (2013). To verify
the extent of this overlap we use more detailed six-digit occupational data from the Occupation
Employment Statistics (OES) between 2000 and 2015 and examine differences in the intensity of
various other tasks. Figure 4 plots the distribution of intensity for five different tasks in high and
low IT intensity occupations. The differences between IT and non-IT are significant for cogni-
tive, technical, social, and general tasks, but not for manual and service task intensities. Even

can cross-walk earlier industry codes to three-digit NAICS classifications, we cannot cross-walk them accurately to
four-digit NAICS classifications, which is the basis of the high tech definition in Hecker (2005).
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after controlling for differences in task intensities, we still find that IT intensity is significantly
associated with earnings. These exercises are documented in Appendix A.3.1. We also present
descriptives in Appendix A.3.2 on the time series of IT intensity across jobs.

[INSERT FIGURE 4 HERE]

3.4 IT-Intensive Jobs and Structural Change: Some Evidence

Motivated by these results about the large shifts occurring in the labor market following the
emergence of IT-intensive jobs, we next provide some new evidence about their association with
structural transformation. In particular, we ask whether increases in the employment share of IT
have contributed to the hollowing out of manufacturing employment, after accounting for a variety
of confounding factors. Using our decadal Census micro-data to produce county weighted averages
between 1980 and 2015, we restrict the sample to counties with over 2,000 survey respondents and
run regressions of the form:

mct = βXct + γIT ct + ψc + λt + εct (1)

where subscripts c and t denote county and decade, m denotes the manufacturing employment
share, X denotes a vector of local controlling covariates, IT denotes the IT employment share,
and ψ and λ are county and decade fixed effects. A possible endogeneity problem in estimating
Equation 1 arises from the fact that higher productivity workers might sort into IT jobs (and thus
locations with more of these jobs). To the extent that IT jobs are comparatively less likely to be
concentrated in the manufacturing sector, γ may be biased downwards.

While we do not take a strong causal stance on γ, we provide evidence that this relationship
is not spurious or entirely contaminated by endogeneity problems. In particular, we begin by
introducing several controls that help reduce concerns about omitted variables bias, including:
the logged hourly wage, the share of college degree workers, the share of whites, and the share of
males. The inclusion of both wages and college shares helps ensure that we are not comparing
areas with systematically different labor markets. The share of males addresses the concern of
heterogeneous entry among females into different labor markets. The inclusion of county and year
fixed effects removes all time-invariant differences across these labor markets, such as exposure to
trade shocks or local human capital networks. To address the potential endogeneity arising from
reverse causality and unobserved time-varying shocks, we also instrument the contemporaneous
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IT employment share with its 1980 value, which is pre-determined for t > 1980.
Table 3 documents our results. Column 1 presents the simple unconditional correlation, which

suggests that a percentage point rise in the IT share is associated with a 0.67 percentage point
decline in the manufacturing share. We subsequently introduce several controls in column 2,
lowering the point estimate on the IT share to -0.226. Here, we find that the college share is
negatively correlated with the manufacturing share, which is consistent with existing evidence on
growing polarization across industries and the skill premium (Autor and Dorn, 2013). However,
while these controls help address contemporaneous omitted variables, any time-invariant source
of spatial heterogeneity may create attenuation bias. Column 3 introduces county and year fixed
effects without controls, which suggests that a percentage point rise in the IT share is associated
with a 0.38pp decline in the manufacturing employment share. Recognizing the presence of time-
varying unobservables, we once again add our controls, on top of county and year fixed effects,
and find that the gradient only declines marginally in magnitude to an associated 0.35pp.

We finally examine the potential concern of reverse causality by instrumenting the contempo-
raneous IT-intensive share between 1990 and 2015 with the historical 1980 IT-intensive share. Our
identifying variation emerges from the fact that counties with greater exposure to IT-intensive jobs
in 1980 are more likely to experience an expansion during the 1990s technology boom. Our ex-
clusion restriction, however, requires that unobserved shocks to contemporaneous manufacturing
shares are uncorrelated with historical variation in the 1980 share. Since areas vary in unobserved
ways, we insert demographic controls from 1980, including the share of college graduates, males,
and whites, on top of our usual contemporaneous controls. Column 5, therefore, provides an esti-
mate that is remarkably consistent with our baseline of a 0.37pp decline in the the manufacturing
employment share.17 At the very least, the robustness of our estimates shows that contemporane-
ous factors, like China’s entry onto the global stage (Autor et al., 2013a), are unlikely to reverse
the main result.

[INSERT TABLE 3 HERE]

17Failing to control for these 1980 demographic shares produces a downwards biased estimate of -0.67 since
areas with higher employment shares of IT jobs in 1980 are likely positively selected and, therefore, also have lower
manufacturing employment shares. While one might be tempted to control for the 1980 manufacturing share, this
would produce a biased estimate since we would be instrumenting with a variable that endogenously affects our
hypothetical control; Angrist and Pischke (2009) refer to it as “over controlling”.
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4 IT-task intensity and Labor Substitution

The comovement of price and quantities of different types of labor inputs conveys information
about the extent to which IT-task intensive jobs can substitute for other jobs. In what follows we
examine this comovement through the lens of a production structure featuring imperfect substitu-
tion between heterogeneous inputs. In this way we are able to estimate a well-defined elasticity of
substitution between IT and non-IT labor. The analysis allows for this elasticity to differ across
industries (manufacturing and services). We posit that output (value added) in industry i, de-
noted Φit, is generated using aggregate IT and non-IT efficiency-weighted labor services, denoted
LITit and LNITit :

Φit =
[
αit

(
LITit z

IT
it

)νi + (1− αit)
(
LNITit zNITit

)νi] 1
νi (2)

where z denotes task-specific productivity shocks. The random variables zjit = exp(εjit) are
independent across industries i and task groups j, with εjit ∼ iid(0, σ2

ij).18 The price of each
industry i′s output is pit and can be thought of as the marginal value of that industry’s output.
Equation 2 captures the fact that there is imperfect subsitutability of IT and non-IT labor services.
This subsitutability is allowed to vary across industries. The efficiency-weighted inputs are the
product of total hours worked (raw hours) and efficiency per hour worked (quality):

LITit = HIT
it E

IT
it , LNITit = HNIT

it ENIT
it (3)

where αit denotes the factor share of IT-intensive labor services of workers in industry i. This
factor share can be interpreted both as factor intensity and as the level of factor augmenting tech-
nical progress. The restriction that IT and non-IT input shares sum to 1 is made for convenience
and is not strictly necessary. H it denotes total work hours in industry i and period t, while Eit
denotes average efficiency per hour worked in a given industry-time bin. Taking derivatives, the
marginal products of effective labor services in industry i are the wages per efficiency unit (shadow

18We purposefully abstract from modeling capital for various reasons. First, our empirical analysis focuses on
the ratio of marginal products of IT and non-IT labor, thereby allowing us to partial out capital. In this sense our
empirical approach implicitly accommodates alternative specifications of capital across industries and education
groups (including a simple Cobb-Douglas technology in capital and aggregate labor). Second, our primary object
of interest is added value produced using IT and non-IT labor inputs. We can capture the degree of subsitutability
of labor inputs in added value across industries and education groups without making strong assumptions about
the role of capital. Finally, modeling capital is complex and beyond the scope of our analysis. In fact, we know of
no obvious way of measuring and linking IT-specific capital and IT-intensive labor inputs.
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prices) ωITand ωNIT . That is, the marginal products of IT and non-IT-intensive labor services
can be written:

pitMP IT
it = ωkit = ∂Φit

∂LITit
= Φ1−νi

it

[
αit(LITit )νi−1(zITit )νi

]

pitMPNIT
it = ωNITit = ∂Φit

∂LNITit

= Φ1−νi
it

[
(1− αit) (LNITit )νi−1(zNITit )νi

]
The ratio of these marginal products implies the following optimality condition for each indus-

try i:

ωITit
ωNITit

=
(

αit
1− αit

)(
LITit
LNITit

)νi−1 (
zITit
zNITit

)νi
(4)

Working with ratios means that we can ignore the industry-specific output prices pit. Taking
logarithms ωkg = ln(wkg ) and time-differences delivers the following equation:

∆ ln( ω
IT
it

ωNITit

) = ∆ ln
(

αit
1− αit

)
+ (νi − 1)∆ ln

(
LITi
LNITi

)
+ ν∆

(
εITit
εNITit

)
(5)

The ratio (ωITit /ωNITit ) denotes the relative return to IT-intensive tasks (IT premium) per
efficiency unit, while (LITi /LNITi ) is the IT premium in effective labor. Neither ratio is directly
observable in data. Multiplying both sides of equations 4 and 5 by, respectively, ln(LITit /LNITit )
or ∆ ln(LITit /LNITit ) allows one to express these relationships as equations linking ratios of total
earnings to ratios of inputs. This change of variable is helpful because earnings are observable,
requiring that we only obtain measures of efficiency-weighted labor services. We discuss these
measurement issues below.

4.1 Empirical Approach

There are several approaches to estimating the elasticity of substitution between IT and non-
IT jobs in Equation5. We overview the different alternatives and discuss their advantages and
disadvantages. We restrict our sample to four decades (1980, 1990, 2000, 2013) when we estimate
Equation 5 in log-levels and to three decades (1990, 2000, 2013) when we estimate equation 5 in
first-differences. Our unit of analysis consists of a state (52) × education (college / non-college) ×
industry (manufacturing / service)× year (1980, 1990, 2000, 2013). For every such unit of analysis
we generate weighted measures of each variable. That is, we group together workers with common
observable characteristics and form a synthetic panel. Hence, each observation is at the level of a
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(industry×location×education×period) group g ∈ G, where G is the total number of bins.
Before discussing our empirical strategies, we begin by outlining the various identification

challenges that are present in estimating our industry-specific elasticity, νi. First, time-invariant
differences across location and skill groups may be correlated with effective labor services. For
example, if college educated workers tend to work longer and earn more for reasons that are cor-
related with, for example, preferences, then we might confound variation in skill prices with labor
services. Second, since efficiency-weighted labor services are unobserved, we must construct a
measure that directly captures the group-specific skill price, so that we can deflate labor services
accordingly, or alternatively we need to model the sorting of heterogeneous workers into different
jobs so to obtain a composition-free measure of labor services. Third, endogenous supply-side re-
sponses to demand or productivity shocks might be correlated with input utilization. For example,
if productivity increases, firms may adjust their demand for labor services. Fourth, unobserved
shocks to the change in the relative IT task premium might be correlated with changes in the
labor services premium. For example, if workers respond to changes in the price of skill by sorting
into different jobs, then the composition of workers in different groups would change.

Next, we sequentially describe our solution to each of the different identificat ion problems.
Fortunately, the first challenge can be easily addressed by first-differencing the equilibrium condi-
tion linking prices with labor services, as in equation 5. This removes time-invariant heterogeneity
from our synthetic panel data set.

To address the second challenge, related to measurement, we introduce a quality-adjustment
of labor services based on estimates of the relative IT task price. Using the definition of effective
(efficiency-weighted) labor aggregates, within each group g ∈ G, we have

LITg = HIT
g EIT

g , LNITg = HNIT
g ENIT

g .

Furthermore, wage bills (aggregate earnings) within each group g are defined as the products
ωITg LITg and ωNITg LNITg . To approximate the relative price ratios, ln(ωITg /ωNITg ), and labor services
ratios, ln(LITit /LNITit ), we apply a variant of the approach of Autor et al. (2006) and Autor et al.
(2008) by proceeding in two steps. First, we regress logged annual earnings on an indicator for
whether the individual is in an IT job, conditional on a range of observed characteristics. Under
the identifying assumption that unobserved shocks to earnings are uncorrelated with selection into
IT and non-IT jobs across industries, the coefficient captures the skill price of IT jobs. Second,
we use the estimated coefficient (normalized by the individual’s annual hours worked) to deflate
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the earnings ratio and obtain a quality-adjusted measure of labor services.19 While this approach
has its limitations, it is preferable to using raw hours worked as a proxy for labor services, which
would require assuming that all individuals are identical in terms of their efficiency.

The third issue has to do with endogeneity of input choices made by optimizingfirms. We
address this by instrumenting for labor inputsusing historical shocks (specifically the growth in
the IT employment premiumbetween 1970 and 1980 and the share of IT workers in 1970). These
historical instruments are predetermined with respect to contemporaneous movements in bothlabor
services and skill price premia. Hence, they help show that our elasticity estimates are not driven
by mechanical concerns about contemporaneous input utilization decisions. We also experiment
using lagged values of labor inputs as instruments, obtaining similar results.

The final identification concern relates to the possibility of endogenous sorting into jobs based
on unobserved characteristics. If individuals move across sectors because of unobserved compara-
tive advantage, then our skill price proxy will be biased. In particular, as more and more marginal
workers flow out of manufacturing into services, the relative efficiency composition of workers in
manufacturing will improve significantly, given its relatively small size. Ignoring these composition
effects may cause us to underestimate the elasticity of substitution between IT and non-IT workers
in the manufacturing sector. In other words, changes in labor services might reflect differences in
the quality of workers within the sector because individuals are responding to changes in relative
task prices. We address this non-random selection by estimating a model featuring endogenous
selection due to unobserved comparative advantage, based on the original contribution of Adao
(2016). For brevity, we relegate the description of this model to Appendix A.4, where we outline
its structure, the key identifying assumptions and estimating equations.

4.2 Estimates of the Elasticity by Industry

Table 4 presents estimates of the elasticities for different specifications of the estimating equations
for the baseline model, which does not explicitly account for selection on unobservables, as well
as for specifications based on selection-adjusted measures of quantities and prices. We discuss

19The identifying assumption here is not innocuous and we discuss its limitations below. We control for demo-
graphics (race, marital status, gender, a quadratic in years of schooling, age bin fixed effects [20-29, 30-39, 40-49,
50+], weeks worked per year (over the last year) fixed effects, and logged weekly hours worked. The advantage
of this approach is that hours worked and weeks worked potentially absorb some of the variation in individual
earnings dispersion that is correlated with preferences for work and/or other possible confounders. We have also
experimented with regressing the hourly wage on an IT job indicator, using it to deflate the earnings ratio. These
two approaches give similar results.
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selection-adjusted estimates in the following section. Estimates are reported separately for each
industry (M=manufacturing; S=services), for both log-levels levels and first-difference specifica-
tions (in which case “Time Diff.(∆)” is set to “Yes”).We report OLS estimates as well as IV (in which

case “Instrument” is set to “Yes”). Time-differenced specifications are preferable in the presence of
time-invariant unobserved heterogeneity.20

We begin by discussing results based on a simple quality-adjusted measure of labor inputs
(obtained by deflating earnings using a IT task price premium that varies by group × period).
Columns 1 and 2 report OLS estimates for log-level specifications, suggesting an elasticity of
substitution of 1.72 for manufacturing and 1.24 for services. When we estimate the relationship in
first-differences (columns 3 and 4) we obtain elasticities of, respectively, 1.28 and 1.15. Industry-
specific elasticities appear even more similar in columns 5 and 6, where we adopt an instrumental
variable approach using historical growth in the employment premium between 1970 and 1980 and
the IT share of workers in 1970.

Turning to the estimates based on the selection model, which corrects for both quality and non-
random sorting over jobs, we find elasticities of 1.63 and 1.31, respectively, for the manufacturing
and services sectors. To account for the concern that changes in labor inputs may be endogenously
related with changes in skill prices, we again instrument using our pre-determined historical mea-
sures, obtaining elasticities of 1.77 and 1.56. The industry-specific elasticities estimated using the
selection-adjusted model are statistically different from one another: the p-value is close to zero
for the OLS and is 0.028 for the IV. The wider wedge between the two sectoral elasticities in the
selection-adjusted model is consistent with systematic changes in average efficiency due to the
reallocation of marginal workers from manufacturing into services. Finally, Table 8 in Appendix
A.5 presents a set of elasticity estimates based on an alternative measure in which we define high
IT intensity occupations those with intensity scores above the median.

[INSERT TABLE 4 HERE]

20We use a simultaneous equation estimator that allows us to (i) flexibly combine information for different
decades, (ii) experiment with and without restricting parameters to be the same across decades, (iii) control for
endogeneity through first-stage IV regressions, when necessary.
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5 The Emergence of IT-Intensive Services and Solow’s

Paradox

Traditional arguments about the increasing pervasiveness of IT point towards greater productivity
and automation in the work-place. However, as Acemoglu et al. (2014) clearly show for the U.S.
manufacturing sector, there is little systematic evidence that IT-using industries have actually
become more productive over time. While there is some evidence of faster growth in output per
worker in IT-using industries, these differences are driven by a more rapid decline in labor employed
in those industries and a relatively constant, or even declining, level of output (rather than higher
output, as one might have expected). For these reasons, Acemoglu et al. (2014) conclude that
Solow’s famous paradoxical statement that “...you can see the computer age everywhere but in
the productivity statistics” is far from being resolved. We revisit these issues through the lens of
our model and make two contributions: (i) we use our measure of the IT employment share based
on occupational heterogeneity to replicate Acemoglu et al. (2014) and compare our results with
those obtained using their industrial heterogeneity measure, and (ii) we apply our IT measure
to distinguish between labor productivity growth in high and low IT industries within both the
manufacturing and services sectors.21

We begin by constructing the employment share of IT workers across each three-digit industry,
comparing it with the baseline IT capital intensity measure in Acemoglu et al. (2014). The
(weighted) correlation between these alternative measures of IT prevalence is 0.46 (see Figure 9).22

One reason our measure differs from industry-based proxies is that we focus on the underlying
tasks that workers perform at a five-digit occupation level, rather than measuring capital assets as
in prior work (e.g., Stiroh (2002)). While we do not argue that looking at a measure of IT-using
labor is better than a measure of IT-using capital, we simply point out that they capture different
features of reality. Using our employment share of IT by industry, we subsequently estimate
regressions identical to Acemoglu et al. (2014) at the three-digit industry × year level:

21To put the benefit of our task-based measure into context, Acemoglu et al. (2014) remark that: “A second
category of explanation for these unexpected results is that our measure of IT investment, constructed by averaging
computer investment data from 1977–2007, misses the mark.”

22We also implemented a different comparison by partitioning industries into high and low IT based on our
IT-intensity measure, as well as the measures from Acemoglu et al. (2014) based on computer investment, the SMT
dummy, and computer investment between 1977-82. The results imply that the first measure matches our high and
low IT industries in 72% of the cases, the second measure only matches ours in 48% of the cases, and the third
measure matches ours in 64% of the cases.
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log Yjt = γj + δt +
∑
t

βt × ITj + εjt (6)

where Y denotes our outcome variable (e.g., the real value of shipments or real output), IT
denotes a measure of the IT intensity, γ denotes three-digit industry fixed effects, and δ denotes
year fixed effects. The primary coefficients of interest in Equation 6 are the βt values. We normalize
the coefficient on the IT variable to zero in the base year β0. Hence the series {β1, β2, ...} may be
read as the level of the coefficient on IT in each subsequent year, relative to the base year. These
coefficients characterize the deviations from trend in the return to IT intensity across industries:
hence, only their time variation (rather than their absolute value) is of interest for our analysis.

As mentioned above, we use the baseline measure of IT intensity taken from Acemoglu et al.
(2014), which is the share of investment in computers (relative to total investment), together with
our employment share of IT, which denotes the share of workers in IT-intensive jobs within a given
industry.

[INSERT FIGURE 9 HERE]

Figure 10 plots the estimated δt coefficients for each year. We follow Acemoglu et al. (2014) as
closely as possible by crosswalking industries from our CPS micro-data to the three-digit industry
level, which we match into their SIC codes. We also drop the sample of industries that falls within
their “medium computer intensity” measure since those industries expand mechanically over time
due to the increasing pervasiveness of computers in the economy.23 The blue line in Figure 10
replicates their main result that IT use at the industry level is negatively associated with real
shipments over time. However, the red line in Figure 10 illustrates a near opposite pattern when
using our measure of IT intensity (correlation = -0.79)—that is, rising IT intensity is associated
to positive changes in the real value of shipments. As we discussed earlier, one advantage of our
measure is that it captures variation in the utilization of different tasks within each industry, which
is important since IT content is inherently occupation-specific.

Why do these measures produce such heterogeneous productivity profiles? Our measure focuses
on tasks (and associated human capital among the labor force) in IT jobs, whereas Acemoglu
et al. (2014) focus on an industry-level measure of physical IT capital. Hence these two indices are
capturing systematically different phenomena. Given our earlier evidence that the manufacturing

23These industries in the “medium intensity” range of the classification include: SIC 3570-3579, SIC 3660-3669,
and SIC 3670-3679. They also consider a e narrower and a broader definition from Houseman et al. (2013).
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sector exhibits greater subsitutability between IT and non-IT workers, our analysis suggests that
the impact of a marginal unit of IT intensive labor may be strong exactly in those industries
that invested more in physical capital. In sum, these differences underscore that the measurement
strategy matters.

[INSERT FIGURE 10 HERE]

Motivated by these differences between our two measures, we next examine how the IT employ-
ment share affects our understanding of productivity growth in the manufacturing versus services
sectors. That is, we now estimate Equation 6 using logged real output (deflated with 2009 price
indices) as the outcome variable and the IT employment share as the IT intensity index, plotting
the estimated δt coefficients separately for the manufacturing and services sectors.24 Figure 11
highlights two important observations. First, and perhaps most importantly, whereas IT inten-
sity explains a relatively constant share of real output productivity over the past 40 years in the
manufacturing sector, IT intensity is growing rapidly in explaining the surge of productivity in
the services sector. Second, the positive effect of IT intensity in the services sector has continued
unabated after the year 2000. These results are consistent with our early evidence that the bulk
of productivity growth took place within high IT services (Figure 5).

[INSERT FIGURE 11 HERE]

6 Conclusion

Recent debates about the role of technology and automation for labor productivity across jobs
have highlighted the need for new and alternative ways to describe and quantify the emergence
of information technologies in production. Important aspects of the growth of information tech-
nology (IT) include its impact on the labor market (Autor et al., 1998), the organization of firms
(Bresnahan et al., 2002), productivity (Brynjolfsson and Hitt, 2003), and managerial practices
(Bloom et al., 2012). However, much less is known about how the emergence of IT intensive jobs
has influenced structural transformation—that is, productivity, wages and employment changes
in manufacturing and services.

We develop a new index of occupation-level IT intensity that draws from O*NET measures
of task, skill and work environment characteristics. After introducing our index and classifying

24We use real output since it most closely matches the real value of shipments used in Acemoglu et al. (2014).
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five-digit occupations as either high or low IT intensity, we document three stylized facts. First,
the bulk of the increases in productivity since 1950 has been concentrated in high IT industries.
In particular, the high IT services sector has experienced a fivefold growth in value added per
hour worked between 1950 and 2010. Second, we document how technological change has shaped
the distribution of occupation-level returns and employment. We show that IT-intensive jobs
exhibit large and growing earnings and employment premia since 1970. Despite a flattening of the
earnings and employment premia for college and cognitive/non-routine jobs after 2000, premia
have continued rising in IT intensive jobs. Third, we show that increases in the IT employment
share are associated with declines in the manufacturing employment share, consistent with the
view that the surge in IT productivity has accelerated structural transformation.

We subsequently use our task-based measure to estimate the elasticity of substitution between
IT and non-IT jobs in production. Under our preferred specification, we find that the elasticity
of substitution between IT and non-IT labor inputs is 1.6 in the manufacturing sector and 1.3 in
the services sector.

We conclude by using our IT intensity measure to examine whether the emergence of IT-
intensive jobs is associated with productivity growth. Building on Acemoglu et al. (2014), we find
that increases in the prevalence of IT intensive jobs are associated with growth in the real value
of shipments and output at the industry level.

Our results are not meant to provide a definitive conclusion on the relationship between
occupation-level IT intensity and structural transformation. Rather, we present initial evidence on
this relationship to discipline and motivate additional research questions about the ways in which
technological changes affect productivity and inequality patterns across sectors. In particular, we
have shown that the emergence of IT intensive jobs has had a major impact on the employment
structure and on the distribution of wages both within and across sectors. These changes may in
principle account for a non-trivial part of the increasing polarization across jobs documented by
Autor and Dorn (2013). We leave further analysis of these implications for future work.
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Figure 1: Structural Transformation and the Rise of Information Technology
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Figure 4: Distribution of Tasks Across Technology & Information Services Jobs
Notes.–Sources: Occupation and Employment Statistics (national) and O*NET, 2004-2014. The figure plots the distribution of the
six major categories of tasks between high and low information technology intensive jobs. The skill groups are as follows: (1)
cognitive tasks (decision making, learning strategies, listening, learning, problem solving, coordination, and critical thinking), (2)
manual (repairs, equipment maintenance, equipment selection, installation, instruction), (3) technical (programming, quality control
analysis, systems analysis, systems evaluation, technology design), (4) social (persuasion, social, speaking, negotiation), (5) service
(management of financial resources, of material resources, of personnel resources, monitoring, service, operations control, operations
monitoring, operations analysis, troubleshooting), and (5) general (math, writing, time management, reading, science). The ONET
skill data is available from 2010-2014 and is made to have a mean zero and variance of 1. Occupations are harmonized to 2010 SOC
codes.
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Figure 5: Value Added per Hour Worked in Manufacturing and Services, 1950-2010
Notes.–Sources: USA KLEMS, 1950-2010. The figure plots sectoral average annual value added per hour worked in constant
thousands of dollars (deflated using the 2009 GDP deflator from the St. Louis Fed) for high and low IT intensity manufacturing and
services sectors. Values within each high/low IT and manufacturing/services category are averaged based on the long-run employment
counts between 1950 and 2010. Industries are classified as IT intensive if the weighted average z-score of information technology
intensity within three-digit NAICS codes is greater than zero. We construct these weighted average scores using a sample of Census
micro-data for 2000, 2006-2008, and 2013-2015 matched with IT intensities at a five-digit level as implemented in the baseline
definition. The figure shows that logged value added per hour worked has grown primarily in the high IT manufacturing and services
sector with the bulk of the growth driven by high IT services.
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Figure 6: Earnings and Employment Premia to Information Technology, 1970-2015
Notes.–Sources: Census Bureau and O*NET, 1970-2015. Panel A plots the logged (average) annual earnings among IT workers net of
logged annual earnings among non-IT workers (weighted by Census sample weights to produce the average) in the manufacturing and
services sector. Earnings is deflated using the 2010 personal consumption expenditures index and the sample is restricted to workers
earning over $5,000/year, $2/hour, and working 500 hours/year. Panel B plots the logged total number of IT workers net of the
logged total number of non-IT workers. IT workers are classified as those in an occupation with an IT intensity score above the
median in the distribution of five-digit occupations. The figure shows the growing earnings premium and declining employment
premium (i.e., growing employment share) of IT workers.



33

0 .2 .4 .6 .8
earnings premia

2013-2015

2005-2007

2000s

1990s

1980s

1970s

panel A: examining the college premium

college premium (among IT) college premium (overall)

0 .2 .4 .6 .8
earnings premia

2013-2015

2005-2007

2000s

1990s

1980s

1970s

panel B: examining the C/NR premium

C/NR premium (among IT) C/NR premium (overall)

Figure 7: Examining Heterogeneity in the Demand for Skills in High and Low IT Jobs
Notes.–Sources: Census Bureau and O*NET, 1970-2015. Panel A plots, in blue, logged average earnings among IT intensive college
workers net of logged earnings among non-college workers, together with, in red, logged earnings among college degree workers net of
logged earnings among non-college degree workers. Panel B plots, in blue, logged earnings among high cognitive and non-routine
workers net of logged earnings among low C/NR workers, together with, in red, logged earnings among high C/NR jobs. Earnings are
deflated using the 2010 personal consumption expenditure index and the sample is restricted to workers earning over $5,000/year,
$2/hour, and working 500 hours/year. All aggregations from the Census are produced using sample weights.
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Figure 8: Return to IT and College / C/NR Skills, 2005-2016
Notes.–Sources: Census Bureau and O*NET, 2005-2016. Panel A plots the coefficient associated with the college × high IT status
interactions from regressions of logged hourly wages (annual earnings divided by the product of weeks worked last year and average
hours worked/week) on college attainment, high IT status, and their interaction separately by year, conditional on controls. Controls
include: a quadratic in age, family size, race (white and black), marital status, and gender. Panel B implements an analogous
comparison, but uses cognitive and non-routine skills classified at the five-digit occupation level based on whether the intensity is
above or below the median. Earnings are deflated using the 2010 personal consumption expenditure index and the sample is restricted
to workers earning over $5,000/year, $2/hour, and working 500 hours/year. Observations are weighted using sample weights and
standard errors are clustered at the five-digit occupation level.

Table 2: Comparison of Baseline and Hecker (2005) Technology Measures

Dep. var. = ln(annual earnings) ln(annual hours)
(1) (2) (3) (4) (5) (6) (7) (8)

IT (baseline) .63∗∗∗ .43∗∗∗ .10∗∗∗ .08∗∗∗
[.06] [.03] [.02] [.01]

high-tech (hecker, 2005) .55∗∗∗ .34∗∗∗ .09∗∗∗ .05∗∗∗
[.04] [.04] [.01] [.01]

R-squared .18 .04 .34 .28 .02 .00 .07 .06
Sample Size 10379410 10379410 10379410 10379410 10457519 10457519 10457519 10457519
Controls No No Yes Yes No No Yes Yes

Notes.–Sources: Census Bureau, O*NET, 1970-2015. The table reports the coefficients associated with regressions of logged
annual earnings and hours worked on an indicator for whether the person is in an IT intensive job using our baseline O*NET
measure and an alternative from Hecker (2005), conditional on controls, which include the number of children, family size, age,
gender, race, and fixed effects on education. Standard errors are heteroskedasticity-robust and observations are weighted by
sample weights.
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Table 3: The Rise of the Information Technology Employment Share and Structural Change

Dep. var. = manufacturing employment share
(1) (2) (3) (4) (5)

IT share -.67∗∗∗ -.23∗∗ -.38∗∗∗ -.35∗∗∗ -.37∗∗
[.06] [.09] [.06] [.09] [.17]

ln(wage) .12∗∗∗ .11∗∗∗ .12∗∗∗
[.03] [.03] [.03]

male .95∗∗∗ .72∗∗∗ 1.07∗∗∗
[.07] [.09] [.14]

white .14∗∗∗ -.00 .23∗∗∗
[.02] [.03] [.03]

college -.37∗∗∗ -.23∗∗∗ -.21∗∗
[.05] [.06] [.09]

R-squared .22 .61 .92 .94 .57
Sample Size 1434 1434 1422 1422 1090
Controls No Yes No Yes Yes
County FE No No Yes Yes No
Year FE No No Yes Yes No
Instrument? No No No No Yes

Notes.–Sources: Census Bureau, 1980-2015. The table reports estimated coefficients obtained by regressing the manufacturing
employment share at the county-level on the IT employment share, conditional on the logged hourly wage, share of males, share
of whites, and share of college degree workers. There are roughly 250 counties in each year of our sample. Fixed effects are
included for county and year. The instrumental variable specification in column (5) uses the pre-determined 1980 share of IT
workers to predict future IT growth. The sample is restricted to workers earning over $5,000/year, $2/hour, and working at least
500 hours/year. Standard errors are clustered at the county-level.
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Quality-Adjusted Measures Quality & Selection -Adjusted Measures
(M) (S) (M) (S) (M) (S) (M) (S) (M) (S)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1/(1− ν) 1.72*** 1.24*** 1.28*** 1.15*** 1.31*** 1.38*** 1.63*** 1.31*** 1.77*** 1.56***
(0.138) (0.049) (0.066) (0.045) (0.115) (0.116) (0.056) (0.042) (0.092) (0.086)

Time Diff.(∆) No No Yes Yes Yes Yes Yes Yes Yes Yes
Instrument No No No No Yes Yes No No Yes Yes

N 408 408 306 306 306 306 267 267 267 267

Table 4: Comparison of Elasticity Estimates: Different Specifications
Notes.–Sources: Census Bureau, 1990-2015. The table reports the elasticity of substitution between information technology (IT ) and
non-IT workers in two ways. Columns 1-6 estimate the elasticity according to the following equation

∆ ln
(
ωITi LITi /ωNITi LNITi

)
= ∆t ln (αi/(1− αi)) + νi∆t ln

(
LITi /LNITi

)
+ νi∆t

(
εITi /εNITi

)
where our outcome variable is the ratio of the wage bills and our right-hand-side variable is the ratio of effective labor services, which
we estimate in log-levels and first-differences, using ordinary least squares and instrumental variables. We obtain quality-adjusted
labor services premia by first estimating a group × year skill price obtained by regressing annual earnings on an indicator for working
in an IT job, conditional on controls, and subsequently dividing total earnings by the skill price proxy and multiplying by an
individual’s total hours worked during the year. Controls in the skill price estimation include race, family size, marital status, gender,
a quadratic in years of schooling, and age bin fixed effects (20-29, 30-39, 40-49, 50+). Controls in our estimation in the equilibrium
condition include: group-specific average family size, share of males, race shares, a quadratic in schooling, and age bin shares.
Columns 7-10 estimate the elasticity according to the following equation

∆ ln
(
ωITi /ωNITi

)
= ∆t ln (αi/(1− αi)) + (νi − 1)∆t ln

(
LITi /LNITi

)
+ νi∆t

(
εITi /εNITi

)
where the difference from columns 1-6 is that our skill prices and quality-adjusted measure of labor services are obtained from our
selection model based on Adao (2016). Controls in all specifications are the same and our instruments include the IT employment
premia growth between 1970 and 1980 and the share of IT workers in 1970. Observations are weighted by the number of workers
observed in each cell in 1980.
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Figure 9: Comparison of Physical Computer Investment and Employment IT Shares
Notes.–Sources: Current Population Survey and Acemoglu et al. (2014), 1970-2009. The figure plots the share of computer investment
relative to total (using Acemoglu et al. (2014)) with the employment share of IT (using the baseline O*NET measure) at a three-digit
industry level of aggregation. Observations are weighted by the number of individuals in each three-digit industry cell obtained from
the CPS. The figure shows a positive correlation between computer investment and IT workers in the cross-section of industries.
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Notes.–Sources: Current Population Survey (1980-2009) and Acemoglu et al. (2014). The figure plots the coefficient on the
interaction between the IT intensity measure and year dummies (normalized to 1980 as zero) from regressions of logged real value
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Figure 11: IT Intensity and Real Output, Manufacturing and Services
Notes.–Sources: Current Population Survey and Bureau of Economic Analysis, 1970-2016. Consider the following regression:
yjt = α+ λt +

∑
t
δt(ITj × λt) + ηj + εjt. The figure plots the coefficients associated with the interaction, δt, separately for

manufacturing and services sectors. The outcome variable is real gross output, which is deflated using 2009 price indices. IT denotes
the employment share of IT at a three-digit NAICS level of aggregation between 1970 and 2015. Standard errors are clustered at the
industry level and observations are weighted by average employment between 1998-2015.

A Online Appendix (Not for Print)

A.1 Supplement to Data Measurement

A.1.1 Index Measures of IT Intensity

We use a combination of input data from O*NET on the underlying tasks, knowledge, and skills
workers use at a six-digit level of occupational heterogeneity. While we detail the different in-
dices below, we have also experimented with different clustering algorithms besides our baseline
approach of averaging across each of these indices.

Computers and Electronics (knowledge): Knowledge of circuit boards, processors, chips,
electronic equipment, and computer hardware and software, including applications and program-
ming Question: What level of COMPUTERS AND ELECTRONICS is needed to perform your
current job? 1 (lowest level): Operate a VCR to watch a pre -recorded training tape 4 (interme-
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diate): Use a word processor 6 (high): Create a program to scan computer disks for viruses.
Interacting with computers (work activity): Using computers and computer systems (in-

cluding hardware and software) to program, write software, set up functions, enter data, or process
information. Question: What level of WORKINGWITH COMPUTERS is needed to perform your
current job? 1 (lowest level): Enter employee information into a computer database 4 (interme-
diate): Write software for keeping track of parts in inventory 6 (high): Set up a new computer
system for a large multinational company.

Programming (skills): Writing computer programs for various purposes Question: What level
of PROGRAMMING is needed to perform your current job? 1 (lowest level): Write a program
in BASIC to sort objects in a database 4 (intermediate): Write a statistical analysis program
to analyze demographic data 6 (high): Write expert system programs to analyze ground radar
geological data for probable existence of mineral deposits.

System (skill): Evaluation Identifying measures or indicators of system performance and the
actions needed to improve or correct performance, relative to the goals of the system Question:
What level of SYSTEMS EVALUATION is needed to perform your current job? 1 (lowest level):
Determine why a coworker has been overly optimistic about how long it would take to complete a
task 4 (intermediate): Identify the major reasons why a client might be unhappy with a product
6 (high): Evaluate the long-term performance problem of a new computer system.

Quality control analysis (skill): Conducting tests and inspections of products, services,
or processes to evaluate quality or performance Question: What level of QUALITY CONTROL
ANALYSIS is needed to perform your current job? 1 (lowest level): Inspect a draft memorandum
for clerical errors 4 (intermediate): Measure new part requisitions for tolerance to specifications 6
(high): Develop procedures to test a prototype of a new computer system.

Operations analysis (skill): Analyzing needs and product requirements to create a design
Question: What level of OPERATIONS ANALYSIS is needed to perform your current job? 1
(lowest level): Select a photocopy machine for an office 4 (intermediate): Suggest changes in
software to make a system more user friendly 6 (high): Identify the control system needed for a
new process production plant.

Updating and using Relevant knowledge (work activity): Keeping up-to-date technically
and applying new knowledge to your job Question: What level of UPDATING AND USING
RELEVANT KNOWLEDGE is needed to perform your current job? 1 (lowest level): Keep up
with price changes in a small retail store 4 (intermediate): Keep current on changes in maintenance
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procedures for repairing sports cars 6 (high): Learn information related to a complex and rapidly
changing technology.

Technology design (skill): Generating or adapting equipment and technology to serve user
needs. Question: What level of TECHNOLOGY DESIGN is needed to perform your current job?
1 (lowest level): Adjust exercise equipment for use by a customer 4 (intermediate): Redesign the
handle on a hand tool for easier gripping 6 (high): Create new technology for producing industrial
diamonds.

Analyzing Data or Information (work activity): Identifying the underlying principles, rea-
sons, or facts of information by breaking down information or data into separate parts. Question:
What level of ANALYZING DATA OR INFORMATION is needed to perform your current job?
1 (lowest level): Determine the location of a lost order 4: (intermediate): Determine the interest
cost to finance a new building 6: (high): Analyze the cost of medical care services for all hospitals
in the country.

Processing Information (work activity): Compiling, coding, categorizing, calculating, tab-
ulating, auditing, or verifying information or data. Question: 1 (lowest level): Tabulate the costs
of parcel deliveries 4: (intermediate): Calculate the adjustments for insurance claims 6: (high):
Compile data for a complex scientific report.

Engineering and technology (knowledge): Knowledge of the practical application of en-
gineering science and technology. This includes applying principles, techniques, procedures, and
equipment to the design and production of various goods and services. Question: What level of
knowledge of ENGINEERING AND TECHNOLOGY is needed to perform your current job? 1
(lowest level): Install a door lock 4: (intermediate): Design a more stable grocery cart 6: (high):
Plan for the impact of weather in designing a bridge.

Management of Material Resources: Obtaining and seeing to the appropriate use of
equipment, facilities, and materials needed to do certain work. Question: What level of MAN-
AGEMENT OF MATERIAL RESOURCES is needed to perform your current job? 1 (lowest
level): Rent a meeting room for a management meeting 4: (intermediate): Evaluate an annual
uniform service contract for delivery drivers 6: (high): Determine the computer system needs of
a large corporation and monitor use of the equipment.

We take the sum of these constructed indices and produce a standardized z-score with a mean
of zero and standard deviation of one. We classify jobs as high (low) IT if the z-score is above
(below) zero.
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A.1.2 Background Comparisons of Indices

Here we discuss comparisons of our IT index to alternative measures. Namely, we examine how
results change when we use a close analogue that classifies jobs as high IT if they are above the
median z-score of IT intensity. Figure 12 plots the earnings and employment premia across the
manufacturing and services sectors under both the baseline (mean) and alternative (median) score
rule. These premia are defined as the logged earnings and employment difference between high and
low IT jobs, respectively. Panels A and C illustrate that the earnings premia are very similar in
both levels and trends—the correlation between the two is 0.83. For example, where the definition
based on the mean implies an initial 1970 logged earnings difference around 0.50 in manufacturing,
the definition based on the median implies an earnings difference of roughly 0.39.

Panels B and D show that the employment premia have similar trends. The differences in
levels should not be surprising in light of the fact that the definition based on the median contains
a larger number of observations since it splits occupations evenly into high and low IT, whereas
the definition based on the mean includes roughly 7% fewer observations in the high IT category
based on the distribution of IT intensity across jobs.
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Figure 12: Comparison of Mean and Median Based Information Technology Labels
Notes.–Sources: Census Bureau and O*NET, 1970-2015. Panels A and C plot the logged (average) annual earnings among IT workers
net of logged annual earnings among non-IT workers (weighted by Census sample weights to produce the average) in the
manufacturing and services sector using the two different definitions of IT jobs. Earnings is deflated using the 2010 personal
consumption expenditures index and the sample is restricted to workers earning over $5,000/year, $2/hour, and working 500
hours/year. Panels B and D plot the logged total number of IT workers net of the logged total number of non-IT workers using the
two different definitions of IT jobs. In the “mean” based definition, IT workers are classified as those in an occupation with an IT
intensity score above the mean (z-score of zero) in the distribution of five-digit occupations, whereas, in the “median” based
definition, IT workers are classified as those in an occupation with an IT intensity score above the median z-score in the distribution
of five-digit occupations.

We also examine an alternative measure of IT intensity among workers, proposed by the
Census (Beckhusen, 2016). Initially introduced in 1970, this classification designated only three
occupational groups as IT jobs, and by 2010 it included 12 occupational groups. Figure 13
plots both the employment count of IT workers and the employment share of IT jobs in the
overall economy since 1970. This measure captures jobs that overwhelmingly use computers (e.g.,
database administrators and computer programmers), while omitting a wide array of occupations
that regularly interact with other types of information technology. We, therefore, conclude that
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our approach is preferable as the O*NET provides a systematic way of surveying all occupations
and their relative interaction and dependence on IT related skills, task, and knowledge.
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Figure 13: Information Technology Workers, 1970-2014
Notes.–Sources: See Beckhusen (2016) for calculations. Occupation codes were harmonized to the 2010 census classification.

A.2 Supplement to Descriptive Statistics

The main text presents regressions of various outcome measures (e.g., logged hourly wage) on IT
intensity using Census micro-data. While these coefficients characterize the conditional mean, we
now explore the distribution of these outcomes in occupations with high and low IT using six-
digit occupational variation from the Occupation and Employment Statistics (OES), displayed in
Figure 14. The benefit of these data is that they are comprehensive and contain the most granular
variation available that can match with our IT intensity index. We find that there is a remarkable
difference in the distribution of hourly wages between jobs with more versus less IT intensity. The
difference in employment and inequality between the two are a little more subtle, although high
IT jobs tend to be larger in both respects.
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Figure 14: Distribution of Hourly Wages, Employment, and Inequality, by IT Intensity
Notes.–Sources: Bureau of Labor Statistics Occupation and Employment Statistics (national) tables, 2000-2015. The figure plots the
distribution of logged median hourly wages, employment, and hourly wage ratio inequality proxies for high and low IT-intensive
occupation.

We subsequently examine the cross-sectional differences in earnings and employment premia
by major industry. Figure 15 plots logged income in IT-intensive jobs net of income in non-IT-
intensive jobs, together with the IT employment share, separately by major industry, using the
Census micro-data for 1980 and 2013-2015. Whereas in some industries there is a very small
premium (e.g., wholesale), in others there is a high premium. For example, in finance, insurance,
and real estate, IT-intensive workers earn approximately 70% more than their counterparts. While
both FIRE and manufacturing sectors have similar IT income premia, the employment share of
IT workers is much greater in FIRE than it is in manufacturing (e.g., 40% versus 25%).
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Figure 15: Earnings and Employment Premia, by Industry and Year Group
Notes.–Sources: Census Bureau and O*NET, 1980 and 2013-2015. The figures plot the logged IT earnings premium obtained by
taking logged labor income in IT-intensive jobs net of logged labor income from non-IT-intensive jobs across, and the IT employment
share, both across industries. Observations are weighted by the survey sample weights.

A.3 Supplement to the Descriptive Evidence and Facts

A.3.1 Robustness of Controlling for Skill Intensity

The main text presents evidence showing that hourly wages are significantly higher in jobs with
high IT intensity, relative to low intensity. However, once concern is that IT intensity is simply
correlated with other valuable skills through selection channels. We address this concern by
exploiting cross-sectional variation through regressions of the form

yot = αskillo + γtITo + ψo′ + εot (7)

where y denotes our outcome variable of interest (logged employment, inequality, and hourly
wages), skill denotes a vector of occupation-specific skills, IT denotes the intensity of information
technology, and ψo′ denotes fixed effects on four-digit occupation cells. We present two main
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sets of estimates for Equation 7: unconditional and conditional correlations. The conditional
correlation estimates illustrate that the return to IT intensity is large, even after controlling for
the skill content associated to different tasks. These fixed effect estimates also illustrate that the
wage premium persists after controlling for non-random sorting of different workers into different
occupations at a detailed four-digit level.

Table 5 documents these results. Beginning with the logged hourly wage as the outcome vari-
able, the unconditional correlation estimate suggests that a standard deviation rise in information
technology is associated with a large 0.45% rise in the median logged hourly wage. The estimate is
still statistically and economically significant after introducing detailed measures of skill intensity
and four-digit fixed effects. Importantly, IT intensity is approximately half as large in magnitude
as the association between hourly wages and non-routine & cognitive skills, which suggests that
IT intensity is not merely a proxy for high skilled occupations. We also find that, in the cross-
section, a standard deviation increase in IT intensity is associated with a large 0.57% decline in
occupational employment and a 0.12% rise in the 90-10 logged hourly wage difference.

While the employment and inequality differences between IT and non-IT jobs are stark in the
cross-section, they become statistically insignificant once we control for four-digit occupation and
year fixed effects. Only an hourly wage premium remains: a standard deviation rise in IT intensity
is associated with a 0.13% rise in the hourly wage. Regressions that control for occupation and
year fixed effects also contain the standard set of skill intensity measures from the skill-biased
technical change literature (Acemoglu and Autor, 2011). Strikingly, a standard deviation rise in
non-routine and cognitive skills is associated with almost as large of an increase in the hourly
wage as a proportional increase in IT intensity—0.12 for non-routine & cognitive versus 0.13 for
IT. We also find that an increase in non-routine & cognitive is associated with a statistically
significant decline in employment and a statistically significant rise in inequality, consistent with
early evidence from Autor et al. (2003).

A.3.2 Time Series Variation in IT Tasks Intensity

We provide a brief characterization of the time series heterogeneity in aggregate IT intensity by
plotting the evolution of each of its sub-components between 2000 and 2016, weighted by each six-
digit occupation’s employment from the Occupational Employment Statistics (OES) data. Table
6 reports the mean and standard deviation of each input intensity over time. Across most of the
categories, the intensity is growing and generally matches our intuition about the types of tasks
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Table 5: IT Intensity and Task Content of Jobs

Dep. var. = logged hourly wage logged employment logged 90-10 ratio
(1) (2) (3) (4) (5) (6)

information technology .45∗∗∗ .13∗∗∗ -.57∗∗∗ .02 .12∗∗∗ .00
[.02] [.02] [.10] [.09] [.02] [.01]

non-routine, cognitive .12∗∗∗ -.28∗∗∗ .05∗∗∗
[.02] [.11] [.02]

non-routine, non-cognitive -.02 .06 -.01
[.02] [.08] [.02]

routine, cognitive .04∗∗∗ -.05 .01
[.01] [.06] [.01]

routine, manual -.02 -.14 -.09∗∗∗
[.02] [.12] [.03]

non-routine, manual .03 .17 .04∗
[.03] [.12] [.02]

R-squared .63 .92 .13 .64 .22 .73
Sample Size 6897 6897 7516 7516 6979 6979
Controls No Yes No Yes No Yes
4-dig Occupation FE No Yes No Yes No Yes
Year FE No Yes No Yes No Yes
Notes.–Sources: Occupation and Employment Statistics (BLS) and O*NET, 2004-2015. The table reports the coefficients
associated with regressions of logged employment, median hourly wages, and the logged 90-10 hourly wage differential on a
standardized measure of IT intensity and standardized measures of skills following the strategy in Acemoglu and Autor (2011).
Standard errors are clustered at the six-digit occupation level.
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that have become more common, such as processing information, analyzing data, and task related
to engineering and technology. However, dispersion in the intensity is staying roughly constant
across most categories.

We now provide another way of characterizing the heterogeneity more visually. In particular,
looking at the mean IT intensity might confound heterogeneity in the distribution of IT intensity
across occupations. While the main text provides some useful heuristics that display the average
IT intensity over time, it confounds a significant amount of heterogeneity across 773 unique six-
digit occupations. Figure 16, therefore, plots the distribution of each input to the aggregate index
in both 2004-2006 and 2014-2016 time periods. While a few of the distributions are relatively time
invariant (e.g., quality control and programming), many distributions exhibit interesting changes.
For example, both the “computers & electronics” and “interaction with computers” categories
grow in both mean and skewness.
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Notes.–Sources: O*NET. The figure plots the intensity of the nine inputs to the aggregate information technology (IT) index for 2004
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A.3.3 Robustness: Labor Productivity Measures

The main text reports time series for real labor productivity, defined as value added per hour
worked, using KLEMS data from 1950 to 2010. Sectors are defined as high IT if the weighted
z-score of IT intensity, obtained from matched O*NET and Census micro-data for 2000, 2006-
2008, and 2013-2015, is greater than zero. Our classification implies that NAICS22, NAICS324,
NAICS325, NAICS333, NAICS335, NAICS336, NAICS339, NAICS51, NAICS52, and NAICS61
are high IT sectors, with the remaining sectors as low IT (NAICS11, NAICS21, NAICS23,
NAICS311, NAICS314, NAICS321, NAICS322, NAICS326, NAICS327, NAICS331, NAICS42,
NAICS44, NAICS48-49, NAICS531, NAICS532, NAICS62, NAICS71, NAICS72, and NAICS81).

One interesting result from our classification is the high value added per worker in the high
IT manufacturing sector. A possible explanation behind these levels’ differences is their extensive
use of capital equipment, particularly since these are mostly primary metals sectors. Figure 17
addresses this concern by netting out capital compensation from value added, which produces
a high IT services time series closer to high IT manufacturing. In fact, the growth in labor
productivity under this approach is 700% for high IT services, whereas it is only 275% for high IT
manufacturing (versus 506% and 327%, respectively, when using the baseline definition that does
not net out capital compensation).
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Figure 17: Value Added per Hour Worked in Manufacturing and Services, 1950-2010
Notes.–Sources: USA KLEMS, 1950-2010. The figure plots sectoral average annual value added net of capital compensation per
worker in constant thousands of dollars (deflated using the 2009 GDP deflator from the St. Louis Fed) for high and low information
technology manufacturing and services sectors. Sectors in each high/low IT and manufacturing/services category are averaged based
on the long-run employment average between 1950 and 2010. Industries are classified as high information technology if the weighted
average z-score of information technology intensity within three-digit NAICS codes is greater than zero. We construct these weighted
average scores using a sample of Census micro-data for 2000, 2006-2008, and 2013-2015 matched with IT intensities at a five-digit
level as implemented in the baseline definition. The figure shows that logged value added per hour worked has grown primarily in the
high IT manufacturing and services sector with the bulk of the growth driven by high IT services.

As an additional point of comparison, we partition sectors in a different way. This allows us to
visualize how different groupings of high and low technology sectors influence our understanding of
heterogeneity within the services sectors. We use an alternative classification based on a “cherry-
picking approach”, in which we select sectors as high tech based on whether the sector sounds like
one that makes intensive use of technology. In particular, we define high tech services sectors as
publishing / software, motion picture / sound recording, broadcasting / telecommunications, infor-
mation / data processing, federal reserve banks / credit intermediation, securities and commodity
contracts, insurance carriers, funds / trusts, real estate, rental / leasing services, legal services,
computer systems design / related, whereas low tech services sectors are wholesale trade, retail
trade, social assistance, performing arts, amusements gambling / recreation, accommodation, food
services / drinking, and other services.

We use value added in constant dollar of labor compensation as a measure of labor productivity
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. We turn to this definition from the 2017 release of the KLEMS data because it holds constant
potential differences in prices at a sectoral level, but it does not contain a measure of employment
or total hours worked, which we would otherwise use as a closer point of comparison with our
baseline. Figure 18 plots the resulting time series for manufacturing (pooled) and both high and
low tech services. We find that the bulk of the increase in labor productivity is driven by the high
tech services sector. While our selection criteria for high tech services is admittedly cherry-picked,
these results show that our baseline approach provides, if anything, a conservative measure of
value added in high tech services.
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Figure 18: Value Added / Employee Compensation in Manufacturing and Services, 1947-2014
Notes.–Sources: USA KLEMS, 1947-2014. The figure plots sectoral average annual value added per labor (employee) compensation in
constant thousands of dollars for manufacturing and services sectors. Sectors in each category are averaged based on the long-run
employment average between 1947 and 2014. High skilled services sectors cover information and financial sub-sectors, including:
publishing industries (including software), motion picture and sound recording, broadcasting and telecommunications, information
and data processing, federal reserve banks credit intermediaries, securities commodity contracts, insurance carriers, funds, trusts and
other financial vehicles, real estate, rental and leasing, legal, and computer systems design. Low skilled services sectors include
wholesale / retail trade, social assistance, and other services (typically repair).

A.3.4 Robustness: Earnings and Employment Premia

We begin by showing further robustness of the earnings and employment premia to alternative
refinements of the definition, namely the hourly wage and total hours (across all workers) premia.
Panel A in Figure 19 shows a similar result as the main text that the hourly wage premium grew
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nearly identically in both manufacturing and services sectors from 1980-2013. The premium is also
quite quantitatively close to the earnings premium, which suggests that hours differences play only
a small role. Panel B tells a similar story. The observed total hours worked premium is similar as
the employment premium in the main results, which suggests that the intensive margin differences
in hours worked per worker in IT and non-IT jobs are fairly similar. There is a marginally larger
quantitative narrowing of the IT total hours premium, relative to the employment premium, which
follows from the fact that IT workers spend roughly 131 more hours worked per year (relative to
their counterparts).25

25The difference is larger in the manufacturing sector with 143 hours worked more among IT workers versus
only 125 hours worked more in the services sector. The estimate is conditional on family size, race, gender, marital
status, and schooling.
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Figure 19: Hourly Wage and Total Hours Premia to Information Technology, 1980-2015
Notes.–Sources: Census Bureau and O*NET, 1980-2015. The figure plots the hourly wage and total hours (annual hours × number
employees) in high technology and information services jobs between 1980 and 2015. Earnings is deflated using the 2010 personal
consumption expenditures index. We start with 1980 because hours worked is not available in 1970.

We now turn to producing similar patterns on employment and earnings premia when using the
annual CPS. The primary downside is that the estimates are more noisy due to sampling variability
in the workers who are surveyed at the three-digit occupation level. Nonetheless, Figures 20 and
21 plot these premia. The crucial observation in Figure 20 is that, while the employment share
in manufacturing is declining (thinned dotted blue line), the employment share of IT jobs in the
manufacturing sector is rapidly rising (thick solid blue line). The rise of IT jobs accounts for



55

nearly all of the growth in the services sector.

0
.2

.4
.6

.8
%

 e
m

pl
oy

m
en

t s
ha

re
, s

ec
to

r t
ot

al

0
.1

.2
.3

.4
%

 e
m

pl
oy

m
en

t s
ha

re
, I

T 
sp

ec
ifi

c

1970 1980 1990 2000 2010 2020
year

IT, manufacturing IT, services
total, manufacturing total, services

Figure 20: Employment Shares in Technology and Information Services—Sectoral and Aggregate,
CPS Robustness
Notes.–Sources: Current Population Survey (CPS) ASEC, 1970-2015. The figure plots several employment shares. The left y-axis
plots the employment share of manufacturing and services information technology workers (“IT v. non-IT”) relative to their sectoral
total. The right y-axis plots the employment share of manufacturing and services overall (“total”). As such, the level of the right
y-axis will be larger than the level of the left y-axis because it includes non-IT workers as part of the share. The purpose of providing
both sets of trends is to illustrate the IT share in manufacturing and services in light of the overall trends in these two sectors.
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Figure 21: Earnings in Technology and Information Services, CPS Robustness
Notes.–Sources: Current Population Survey (CPS) ASEC, 1970-2015. The figure plots earnings premia in manufacturing and services
sectors where the technology and information services (IT) intensity is based on being above the median score.

Figure 22 also examines heterogeneity in the earnings premia using two different classification
strategies: K-medians and K-means with K = 2. K-medians produces an almost identical result
as the regular medians-based approach, which is not surprising since our classification is based
on the single IT score. Using K-means tends to classify more occupations as IT-intensive, which
is why the earnings premia is marginally smaller—but clearly not by much by any stretch of the
imagination.
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Figure 22: Comparing CPS Earnings Premia with K-medians and K-means
Notes.–Sources: Current Population Survey (CPS) ASEC, 1970-2015. The figure plots earnings premia in manufacturing and services
sectors where the technology and information services (IT) intensity is based on two approaches: using K-medians and K-means
estimators for K = 2.

While the two series produce qualitatively similar series (e.g., the correlation between the
earnings and employment premia in the two are 0.88 and 0.86, respectively), there are at least two
reasons the OES data generates quantitatively different series. The first is that, since the CPS does
not aim to be representative of every occupation at a detailed five-digit level, it may overstate
one type of worker over another. These concerns are potentially amplified by the presence of
occupational misclassification, which has been documented by Kambourov and Manovskii (2013).
The second is that the CPS data only contains a five-digit occupation classification, whereas the
OES data contains a six-digit classification. To the extent there is some detailed within-occupation
reallocation, differences can emerge.
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Figure 23: Earnings and Employment in Information Technology Jobs, National
Notes.–Sources: Bureau of Labor Statistics Occupational Employment Statistics, 1999-2015. The figure plots the logged earnings
premium between information technology and non-IT workers (deflated using the 2010 personal consumption expenditures index) and
the logged employment premium. The employment premium is computed by summing across all IT and non-IT workers at a six-digit
occupation level.

Given the large rise in both the earnings and employment IT premia, we also examine how it
interacts with other documented premia in the labor market, in particular the returns to tenure
(we later examine the interaction with the returns to education). Using the CPS supplement on
job tenure between 1996 and 2014, we are able to non-parametrically characterize the IT premium
across the tenure distribution. To do this, we regress logged hourly wages on a vector of control-
ling covariates (age, number of children, race, gender, marital status, education), subsequently
averaging across the residualized earnings measures for each tenure bin. We include these con-
trols to mitigate the potential effects of the composition of the labor force throughout the tenure
distribution. We separately plot these returns for the 1996-2002 and 2010-2014 time periods to
understand the extent to which these returns might have shifted over time.

Figure 24 documents these results. First, and not surprisingly, the IT premium has grown over
the past decade and it has shifted the earnings premium up across the entire tenure distribution.
For example, between 1996-2002, IT workers with zero years of tenure would earn 30% more than
their non-IT counterparts, whereas between 2010-2014 they would earn 37% more. Looking at
the top of the tenure distribution, however, IT workers with 16-20 years of tenure earned roughly
24% more than their counterparts between 1996-2002, but between 2010-2014 the premium grew
by only one to two percentage points.

Second, and more importantly, the IT premium is declining in tenure. While it is possible that
technology companies—which employ a large share of IT workers—simply tend to have lower av-
erage tenure due to something embedded within their underlying production function, we provide
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evidence that the declining premium is a natural result of a career ladder where skilled workers
begin in an IT-intensive job and then progress to a managerial job. Such examples are common-
place in many technology hubs, like Silicon Valley or San Francisco, where a skilled worker may
begin as a data scientist or consulting out of undergraduate and then transition towards a senior
managerial role after roughly a decade. The main reason for this is that, as individuals progress
in the career ladder, managerial skills become increasingly important and outpace the importance
of IT skills. In particular, while it is true that managers will leverage IT to broaden their span of
control, their comparative advantage in management begins to outweigh their absolute advantage.
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Figure 24: Hourly Wage Premium, by Employee Tenure
Notes.–Sources: Current Population Survey Job Tenure Supplement. The figure plots the residualized logged earnings premium
between IT and non-IT-intensive jobs (identified using the O*NET measurements of tasks) across the distribution of tenure using the
CPS tenure supplement covering 1996, 1998, 2000, 2002, 2004, 2006, 2008, 2010, 2012, and 2014. Logged earnings are residualized by
regressing them against a vector of controls, including age, education, race, gender, marital status, and number of children, taking the
residual as the residualized logged earnings measure. Observations are weighted by the job tenure survey sample weights.

A.3.5 The Declining Premium for C/NR Tasks and College

The main text presents results about the earnings premium between IT and non-IT jobs restricted
to the set of college degree workers, and separately for Cognitive and Non-Routine (C/NR) jobs.
In both cases, the growth rate from 2000 and 2015 is greater within-group than it is across
groups—that is, restricted to the set of college degree workers, the growth in the IT premium
is greater than the growth in the college premium across all in the labor force. We now present
complementary plots that characterize the employment premia between these jobs.

Beginning with Panel A in Figure 25, it is remarkable how much of the employment share
of college workers is accounted for by high IT workers. However, there is important longitudinal
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variation. In the 1970s, these IT jobs accounted for almost all of the share of college degree
workers; roughly 15% had a college degree and 12% were in IT jobs. However, by 2015, nearly
37% of the labor force has a college degree and 27% are in IT jobs. The gap between the college
share and the “college + IT” share reflects the surge in growth of universities and expanded
access to a four-year college degree. Turning towards Panel B in Figure 25, we see that there is
not a substantial difference between the IT + C/NR and C/NR shares—that is, an even smaller
difference in comparison with the college share. For example, in 1970, roughly 27% of jobs were
classified as high C/NR and nearly 26% of those jobs were also classified as high IT. By 2015, the
share of high C/NR jobs grew to 45% and the share of “IT + C/NR” jobs grew to nearly 40%.
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Figure 25: Examining Heterogeneity in the Demand for Skills in High and Low IT Jobs (Em-
ployment Shares)
Notes.–Sources: Census Bureau and O*NET, 1970-2015. Panel A plots the employment share of college and high IT workers relative
to the total labor force, together with the overall college share. Panel B plots the employment share of high cognitive and non-routine
and high IT occupations relative to the total labor force, together with the overall share of high C/NR jobs.

We examine the evolution of employment shares across the four permutations of IT/non-IT and
college/non-college jobs in Figure 26. Importantly, the share of IT and college degree workers has
grown from approximately 20% of the labor force to nearly 32%, and it dwarfs the marginal rise in
non-IT and college degree workers from 2% to roughly 5% over the past 40 years. Symmetrically,
the share of IT and non-college degree workers declined from 32% to 22%, which also dwarfs the
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decline in non-IT and non-college degree workers from 45% to 42%.
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Figure 26: Employment Shares in Information Technology Jobs, by College Attainment
Notes.–Sources: Census Bureau, 1980-2015. The figure plots the share of full-time workers across the permutations of IT versus
non-IT-intensive jobs and college and non-college degree workers.

A.3.6 IT Premia using the Census Classification

In the body of the paper we present a comparison of earnings and hours premia obtained using
either our IT intensity measure or the industry-based measure from Hecker (2005). While these
measures capture different features of the data—in part because Hecker (2005) focuses on indus-
tries, whereas we focus on jobs—we now turn towards an additional comparison of information
technology jobs discussed by Beckhusen (2016). The Census began identifying IT jobs in 1970,
capturing roughly 0.6 percent of the labor market. Beckhusen (2016) discusses how the measure
has expanded since then and grown to 2.9% of the population. These workers represent roughly
16% of our Census sample. We proceed to compare our measure to the Census measure of IT
jobs by examining state panel regressions in first-differences for 1980, 1990, 2000, 2005, and 2015
where we regress earnings and hours worked growth on growth in the IT jobs’ share, conditional
on controls. Our objective is to provide additional context for our results.

Table 7 documents our findings. Using our IT intensity measure we estimate that a one
percentage point (pp) increase in the share of IT workers is associated with a 0.16pp rise in
the growth rate of earnings, whereas a one pp rise in the share of Beckhusen (2016) IT jobs is
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associated with a 0.06pp rise. Once we add demographic controls we find that the gradient for our
measure rises sharply to 0.72pp, whereas the gradient rises for Beckhusen (2016) IT jobs rises only
marginally to 0.10pp. We also find that a one pp rise in the our IT intensity share is associated
with a 0.12pp rise in the growth rate of hours worked, whereas we find that a one pp rise in the
Beckhusen (2016) share is associated with a 0.02pp rise, conditional on controls. Regardless of
the IT proxy we use, increases in the share of IT jobs are associated to increases in earnings and
hours worked.

Table 7: Comparison of Baseline and Beckhusen (2016) Measures

Dep. var. = annual earnings growth annual hours growth
(1) (2) (3) (4) (5) (6) (7) (8)

IT share, growth .16∗∗ .72∗∗∗ .21∗∗∗ .12∗∗∗
[.07] [.11] [.02] [.02]

Beckhusen share, growth .06∗∗∗ .10∗∗∗ .03∗∗∗ .02∗∗∗
[.01] [.02] [.00] [.00]

R-squared .02 .10 .48 .49 .38 .31 .67 .71
Sample Size 255 255 255 255 204 204 204 204
Controls No No Yes Yes No No Yes Yes

Notes.–Sources: Census Bureau, O*NET, 1980-2015. The table reports the coefficients associated with regressions of state ×
decade annual earnings and hours worked growth on the share of individuals who are classified as high IT using our baseline
O*NET measure and an alternative classification of IT jobs from Beckhusen (2016). Controls (in the labeled specifications)
include state growth rates in number of children, family size, age, gender, race, and years of schooling. Standard errors are
clustered at the state-level and observations are weighted by the number of observations at a state × period cell.

A.4 A Model of Production with Heterogeneous Tasks

To explicitly account for selection-effects due to unobserved heterogeneity among workers, we
develop a model based on the original contribution of Adao (2016). The model formalizes an as-
signment problem of tasks and technologies in the tradition of Autor (2013).26 The model features
both worker heterogeneity and sorting across tasks, which are identified using the employment
shares in different demographic groups, regions, and time periods. Estimates based on this model
deliver the implied (shadow) growth rates of IT task prices, relative to non-IT-intensive tasks, as
well as estimates of the changes in labor quality composition.

The endogenous selection into sectors and task groups overcomes the conventional concerns
associated with the approach of Juhn et al. (1993) since residual wage variation might simply

26We adapt Adao’s original structure to our setting, deferring readers to Adao (2016) for derivations and a more
comprehensive discussion of analytical results.
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reflect measurement error or unpriced amenities (Lemieux, 2006). After estimating the model,
we (i) examine the distribution of the implied price and worker quality composition effects, (ii)
use them to recover, in a second step, the elasticity of substitution between IT and non-IT labor
inputs, which we compare to a baseline approach of adjusting for labor services quality.

A.4.1 Task Production

Following Adao’s approach, we partition jobs into groups based on geography (state) and college
attainment, denoted as g ∈ = = {1, 2, .., G}, and we allow for mobility between the manufactur-
ing and services sector. We assume that individuals enter the labor market as either college or
non-college educated workers.27 We view states as small open economies with segmented labor
markets.28 Each industry (manufacturing or services) produces its final output by combining two
inputs: an IT-intensive and a non-IT-intensive labor aggregate. We assume that these interme-
diate labor inputs are produced by aggregating individual tasks, denoted j, supplied by different
occupations. For simplicity, in the following model description we abstract from industry and we
focus on tasks; however, the choice of industry is explicitly accounted for in our empirical analysis.

Workers are heterogeneous in their idiosyncratic productivity at performing different tasks.
That is, each worker is endowed with a productivity vector [LITg (i), LNITg (i)] describing her ability
to perform IT and non-IT-intensive tasks.29 To accommodate the variety of occupations that
workers perform, we assume that each aggregate occupation group k ∈ {IT,NIT} is a collection
of multiple (perfectly competitive) “single-task occupations” j ∈ =k. Each single task output is
used to produce the intermediate labor output k.

The price of the task output of occupation j is denoted as rj. Like Adao (2016), we assume
that workers have identical k-specific productivity within an occupation. That is, workers perform
with identical efficiency across all occupations within k. Hence, an occupation j produces task qj

as follows:
qj = Qj(Lj1, Lj2, ..., LjG),

27We do not model the option of returning to school for continuing education.
28One could work at a commuting zone level, but we choose not to for two reasons. First, at a lower level of

aggregation, our 5% IPUMS sample begins running low on number of observations, producing imprecise shares
of IT employment. Second, in talking with geographers and the Census, the classification of commuting zones
before and after 2000 has changed quite considerably. While we could work at a county level, which has remained
consistently defined over time, our sample size issue would be amplified even further.

29In our empirical implementation we allow the productivity vector to vary both by industry and task group.
However, in what follows we abstract from industry-specific comparative advantage for ease of exposition.
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where Ljg =
´
Sjg
LITg (i)di if workers are employed in an IT-intensive occupation and Ljg =´

Sjg
LNITg (i)di if workers are employed in a non IT-intensive occupation. Like Adao, we also

assume that the function Qj(·) is strictly increasing, concave, differentiable and homogeneous of
degree one. The technology Qj(·) allows for the possibility that the labor inputs of different worker
groups are imperfect substitutes in production, although this is not required. The integration set
Sjg is the set of workers of type g who are employed in occupation j.

Individual efficiency units can then be used to define a notion of comparative advantage in
different occupation groups, i.e. comparative advantage for an individual in the IT sector is
sg(i) = ln[LITg (i)/LNITg (i)], whereas absolute advantage is ag(i) = ln[LNITg (i)]. We take individual
productivity as exogenous—workers draw their efficiency from a bivariate distribution, i.e. sg(i) ∼
Fg(s) and {ag(i)|sg(i) = s} ∼ F̃g(a|s).

Conditioning on product prices, the labor demand in occupation j of sector k (within group
g) is given by:

ωkg = rj
∂Qj

∂Ljg
if j ∈ =k (8)

where ωkg is the marginal product of workers in occupation class k and observable group g.

Below we estimate how the relative productivity of IT and non-IT-intensive occupations has
changed over time, and what these changes suggest about the substitutability of different jobs in
the manufacturing and services industries.30 As in Roy (1951), individuals choose the job that
yields the highest utility, which in our case is merely a function of labor income. Letting ykg (i)
denote the potential logged hourly wage an individual i could earn in sector k, we write:

yNITg (i) = ln(ωNITg ) + ag(i), yITg (i) = ωITg + sg(i) + ag(i)

where earnings in the IT sector are a function of both comparative and absolute advantage.
Because individuals receive different wages based on their comparative advantage, they self-select
into the jobs that offer a higher income. Hence, the set of individuals employed in a given sector
k can be characterized as:

30One potential driver of job substitution is offshoring (Schott, 2004). In fact, any force that shifts the demand
for, or supply of, particular jobs is captured in the shadow price changes that we estimate. For example, if non-IT
jobs are more likely to be outsourced, one might observe a rising share of IT-intensive jobs and a parallel slowdown
in the growth of the shadow price of non IT-intensive jobs.
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Skg ≡
{
i ∈ Ig : k = arg max{yITg (i), yNITg (i)}

}
Markets are perfectly competitive and wages are such that the demand for labor equals the

supply. Since the core part of the model relies on differences in comparative advantage based
on individual productivity, we can rank individuals within each group g by their comparative
advantage quantile q ∈ [0, 1], so that σg(q) ≡ (Fg)−1(q) denotes an individual’s efficiency in the
IT sector based on their rank in the comparative advantage distribution.We can also denote the
conditional distribution of absolute advantage as F̃g(a|σg(q)), with an average αg(q) and variance
vg(q). It follows that the logged wage schedule along the quantile range is :

Y
NIT
g (q) = ln(ωNITg ) + αg(q), Y

IT
g (q) = ln(ωITg ) + σg(q) + αg(q)

As shown in Adao (2016), individuals sort into the IT sector if σg(q) > ln(ωNITg ) − ln(ωITg ),
otherwise they will sort into the non IT sector. Employment composition is pinned down by
marginal individuals with a comparative advantage equal to the relative efficiency-adjusted wage,
i.e. ln(ωNITg )− ln(ωITg ), such that ln(ωNITg )− ln(ωITg ) = σg(lNITg ) where lNITg denotes the employ-
ment share in the non IT sector. When we aggregate across the quantiles allocated to a sector,
within each group g, we obtain the average logged wage in that sector:

Y
k
g = ln(ωkg ) + αkg(lNITg ) where αkg(l) ≡


l−1 ´ l

0 αg(q)dq if k = NIT

(1− l)−1 ´ 1
l

(σg(q) + αg(q))dq if k = IT

A.4.2 Estimating the Growth in Relative Task Prices: IT vs non-IT

For exposition, we abstract from the choice of industry and focus on a bivariate occupation choice
(IT vs non-IT). This allows us to illustrate more clearly the way we estimate growth rates in relative
returns to different tasks. In the subsequent section, we generalize the approach to account for
both occupation and industry choice, so that in the empirical implementation we estimate changes
in relative task returns across industries.

We index geographic region by r and let g denote an education-industry group. To obtain an
empirical counterpart of the theoretical wage relationships based on comparative advantage, we
use the first-order approximation from Adao (2016), which applies to quantiles of the observed
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wage distribution within each set (g, r, t) of observables. Letting Yg,r,t(π) denote the π-th quantile
of the log-wage distribution of group g in region r in period t, we estimate

∆Yg,r,t(π) = ∆ln(ωITg,r,t) +
[
∆ln(ωNITg,r,t )−∆ln(ωITg,r,t)

]
lNITg,r,t0(π) + µg,r,tXg,r,t(π) + ∆νg,r,t(π) (9)

separately for each group-by-region-by-year, where X denotes our usual set of demographic
controls. As discussed in Adao (2016), ∆νg,r,t(π) is a shock to the absolute advantage of workers
in quantile π of the log-wage distribution. Equation 9 identifies ∆ln(ωNITg,r,t ) and ∆ln(ωITg,r,t) using
the initial sectoral compositions, lNITg,r,t0(π), and wage growths, ∆Yg,r,t(π), across the quantiles π
of the logged wage distribution. This approach leverages variation in the IT employment share
across different groups at the start of the sample to identify the task prices growth, ∆ln(ωITg,r,t)
and ∆ln(ωNITg,r,t ). The intuition behind Equation 9 is that, holding constant the distribution of
employees at its initial value lNITg,r,t0(π), any wage changes that accrue to workers in a given (r, g),
between period t− 1 and t, group must be attributed to changes in relative returns per efficiency
unit. The estimator effectively captures that part of the price variation that cannot be attributed
to worker composition effects over time.

The identifying assumption in the Adao (2016) approach is that, conditional on Xg,r,t(π),
pre-shock variation in sectoral employment composition is uncorrelated with variation in labor
efficiency shocks among individuals with different levels of labor income within the same group-by-
region-by-period. The condition is satisfied under the assumptions of a Roy model since marginal
workers are indifferent between the two sectors and have similar returns in both. In other words,
the assumption more generally implies that reallocation of marginal workers cannot have first-
order equilibrium effects on the group’s overall wage distribution. A related assumption we make
is that there is sectoral reallocation between IT and non-IT jobs and between manufacturing and
services jobs; see Adao (2016) for an original discussion of these assumptions.31

Having estimated ∆ln(ωITg,r,t) and ∆ln(ωNITg,r,t ), one can recover the relative changes in workers’

31One concern is that a non-IT-intensive worker in the manufacturing sector may be unlikely to switch into
the services sector or re-train with new skills. We mitigate this concern by estimating our model separately for
non-college and college workers, as well as controlling for a vector of demographics. More importantly, we examined
this concern by computing the gradient between the employment share in manufacturing and the employment share
in IT jobs at a county-level separately by five age brackets. We found that the gradients were between -0.40 and
-0.46 for workers between ages 25 and 49, but -0.63 for workers above the age of 50. These results somewhat mimic
those by Autor et al. (2015), who find that the trade-employment elasticity in manufacturing is coming almost
entirely from older workers.
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composition by taking the difference between raw wages growth and estimated task prices growth.32

For each individual (g, r, t) triplet, we are able to recover the price growth and the change in average
labor efficiency. These estimates are statistically significant for many of the triplets, although not
for all. However, the real value of this procedure lies in the fact that it effectively allows us
to approximate the entire distribution of price growth rates for any given group and point in
time. Each individual triplet’s growth rate can be considered as a (possibly noisy) estimate of
a point in the distribution of growth rates for a given industry and group. For our subsequent
analysis, we regard the (1980 weighted) mean and median of any such distribution as a reasonable
approximation for the growth rate of prices in that industry and group.33

A.4.3 Accounting for Selection into Industry

In our empirical analysis, we explicitly account for the possibility that returns to tasks may vary by
industry, and that workers may have a different comparative advantage across industries. To this
purpose we extend the simple structure described in the previous section to let workers choose
between manufacturing and services. In the simple bivariate choice problem discussed in the
previous section, the marginal product growth for any given (g, r, t) triplet is a weighted average
of the marginal products of workers in IT and non-IT-intensive occupations:34

∆Yg,r,t(π) = ∆ ln(ωITg,r,t)lITg,r,t0(π) + ∆ ln(ωNITg,r,t )lNITg,r,t0(π) + ∆νg,r,t(π). (10)

The equation above can be adapted to accommodate more than two types of jobs. The intuition
is simple: growth in the marginal product within each job can be recovered by estimating the
empirical counterpart of Equation 10 where we consider each job against a combination of all other
jobs. We specifically consider four possible jobs for workers to choose from: IT manufacturing, IT
services, non-IT manufacturing and non-IT services. In the four jobs case, we can write a set of
four equations indexed by industry i ∈ {man, serv} and occupation k ∈ {IT,NIT}, as follows:

∆Yg,r,t(π) = ∆ ln(ωk,ig,r,t)lk,ig,r,t0(π) + ∆ωk,ig,r,t(1− lk,ig,r,t0(π)) + ∆νg,r,t(π) (11)
32Specifically, let ∆κIT

g,r,t and ∆κNIT
g,r,t denote the changes in labor efficiency (composition effects) for IT and

non-IT. We can quantify them by solving: ∆κIT
g,r,t = ∆ln(wIT

g,r,t)/∆ln(ωIT
g,r,t). To account for outliers and noise, we

trim the distributions of both price and composition growth rates at the top and bottom percentiles.
33While we have experimented using other weights, we use the number of observations in each cell from 1980. If

we, for example, allowed the weights to vary over time, we might confound and/or amplify the role of composition
effects.

34Adao (2016) provides a derivation of the result from Equation 34 in his job market paper draft.
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where ωk,ig,r,t is a weighted average of the growths in logged marginal product of the other three
jobs (that is, those that are not in occupation k and industry i). After rearranging, we obtain the
following generalized estimation equation, characterizing the marginal product growth of the four
job groups available:

∆Yg,r,t(π) = ∆ωk,ig,r,t + (∆ln(ωk,ig,r,t)−∆ωk,ig,r,t)lk,ig,r,t0(π) + ∆νg,r,t(π) (12)

Since there are two occupation groups k and two industries i, also in this case we have four
estimation equations; our next section reports each equation that we use. This specification allows
us to recover the growth rate of IT, relative to non-IT, tasks in each of the two industries, for all
the triplets (g, r, t).

A.4.4 Generalizing the Task Prices: Industry and Task Groups

In order to extend the model to allow workers to also choose between industries, we begin with
the equation 34 of Adao (2016), which enables us to recover the marginal product growth of two
types of workers (IT and non-IT in our application):

∆Yg,r,t(π) = ∆lnωITg,r,tlITg,r,t0(π) + ∆lnωNITg,r,t l
NIT
g,r,t0(π) + ∆νg,r,t(π) (13)

Now, notice that this equation can be reinterpreted to accommodate more than two types of
workers. The intuition is the following: the marginal product growth of each kind of job can
be recovered by estimating the equation above considering each job against a combination of the
other jobs. In the four types of workers case, we can write the following four equations:

∆Yg,r,t(π) = ∆lnωIT,mang,r,t lIT,mang,r,t0 (π) + ∆ωIT,mang,r,t (1− lIT,mang,r,t0 (π)) + ∆νg,r,t(π) (14)

∆Yg,r,t(π) = ∆lnωIT,servg,r,t lIT,servg,r,t0 (π) + ∆ωIT,servg,r,t (1− lIT,servg,r,t0 (π)) + ∆νg,r,t(π) (15)

∆Yg,r,t(π) = ∆lnωNIT,mang,r,t lNIT,mang,r,t0 (π) + ∆ωNIT,mang,r,t (1− lNIT,mang,r,t0 (π)) + ∆νg,r,t(π) (16)

∆Yg,r,t(π) = ∆lnωNIT,servg,r,t lNIT,servg,r,t0 (π) + ∆ωNIT,servg,r,t (1− lNIT,servg,r,t0 (π)) + ∆νg,r,t(π) (17)

where ωIT,mang,r,t , for instance, is a weighted average of the marginal product growth of the three
sectors that are not IT manufacturing. Rearranging the four equations above we get the following
equations that enable us to estimate the marginal product growth of the four types of jobs that
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the workers are now allowed to choose:

∆Yg,r,t(π) = ∆ωIT,mang,r,t + (∆lnωIT,mang,r,t −∆ωIT,mang,r,t )lIT,mang,r,t0 (π) + ∆νg,r,t(π) (18)

∆Yg,r,t(π) = ∆ωIT,servg,r,t + (∆lnωIT,servg,r,t −∆ωIT,servg,r,t )lIT,servg,r,t0 (π) + ∆νg,r,t(π) (19)

∆Yg,r,t(π) = ∆ωNIT,mang,r,t + (∆lnωNIT,mang,r,t −∆ωNIT,mang,r,t )lNIT,mang,r,t0 (π) + ∆νg,r,t(π) (20)

∆Yg,r,t(π) = ∆ωNIT,servg,r,t + (∆lnωNIT,servg,r,t −∆ωNIT,servg,r,t )lNIT,servg,r,t0 (π) + ∆νg,r,t(π) (21)

A.5 Elasticity Estimates: Alternative IT Intensity Measure

In the paper we report estimates of the elasticities based on the baseline definition of IT intensity,
which relies on the average z-score of IT intensity. An alternative modeling choice would be to
define IT intensive occupations based on whether their IT score exceeds the median IT intensity.
For ease of comparison Table 8 reports elasticity estimates under both definitions of high IT
intensity: the baseline (mean) and the median.

Estimates are not substantially different and suggest that the value we estimate are robust to
reclassifying occupations in terms of their IT intensity.
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Quality-Adjusted Measures Quality & Selection -Adjusted Measures
(M) (S) (M) (S) (M) (S) (M) (S) (M) (S)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Baseline 1.72*** 1.24*** 1.28*** 1.15*** 1.31*** 1.38*** 1.63*** 1.31*** 1.77*** 1.56***
(0.138) (0.049) (0.066) (0.045) (0.115) (0.116) (0.056) (0.042) (0.092) (0.086)

Median 1.38*** 1.55*** 1.24*** 1.22*** 1.27*** 1.36*** 1.68*** 1.51*** 1.72*** 1.85***
(0.083) (0.077) (0.060) (0.051) (0.097) (0.112) (0.051) (0.058) (0.074) (0.118)

Time Diff.(∆) No No Yes Yes Yes Yes Yes Yes Yes Yes
Instrument No No No No Yes Yes No No Yes Yes

N 408 408 306 306 306 306 267 267 267 267

Table 8: Comparison of Elasticity Estimates: Alternative Measure of IT Intensity
Notes.–Sources: Census Bureau, 1990-2015. The table reports the elasticity of substitution between information technology (IT ) and
non-IT workers in two ways. Columns 1-6 estimate the elasticity according to the following equation

∆ ln
(
ωITi LITi /ωNITi LNITi

)
= ∆t ln (αi/(1− αi)) + νi∆t ln

(
LITi /LNITi

)
+ νi∆t

(
εITi /εNITi

)
where our outcome variable is the ratio of the wage bills and our right-hand-side variable is the ratio of effective labor services, which
we estimate in log-levels and first-differences, using ordinary least squares and instrumental variables. We obtain quality-adjusted
labor services premia by first estimating a group × year skill price obtained by regressing annual earnings on an indicator for working
in an IT job, conditional on controls, and subsequently dividing total earnings by the skill price proxy and multiplying by an
individual’s total hours worked during the year. Controls in the skill price estimation include race, family size, marital status, gender,
a quadratic in years of schooling, and age bin fixed effects (20-29, 30-39, 40-49, 50+). Controls in our estimation in the equilibrium
condition include: group-specific average family size, share of males, race shares, a quadratic in schooling, and age bin shares.
Columns 7-10 estimate the elasticity according to the following equation

∆ ln
(
ωITi /ωNITi

)
= ∆t ln (αi/(1− αi)) + (νi − 1)∆t ln

(
LITi /LNITi

)
+ νi∆t

(
εITi /εNITi

)
where the difference from columns 1-6 is that our skill prices and quality-adjusted measure of labor services are obtained from our
selection model based on Adao (2016). Controls in all specifications are the same and our instruments include the IT employment
premia growth between 1970 and 1980 and the share of IT workers in 1970. Observations are weighted by the number of workers
observed in each cell in 1980.The only difference between the “mean” and “median” rows are that the “median” elasticities are from
measures of high IT defined by whether the individual is above the median IT intensity z-score, whereas the “mean” from our baseline
is defined by whether the individual is above the mean (z-score of zero by construction).


