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Abstract

This paper investigates a theoretical mechanism linking comparative advantage to the distri-

bution of skills in the working population. We develop a tractable multi-country, multi-industry

model of trade with unobservable skills in the labor market and show that comparative advan-

tage derives from (i) cross-industry differences in the substitutability of workers’ skills and (ii)

cross-country differences in the dispersion of skills. We establish the conditions under which

higher skill dispersion leads to specialization in industries characterized by higher skill substi-

tutability across tasks. The main results are robust when the model is extended to allow for

partial observability of skills. Finally, we use distributions of literacy scores from the Interna-

tional Adult Literacy Survey to approximate cross-country productivity differences due to skill

dispersion and we carry out a quantitative assessment of the impact of skill dispersion on the

pattern of trade.
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1 Introduction

The theory of comparative advantage identifies factor endowments as a key determinant of the

pattern of trade. In particular, the theoretical prediction that countries endowed with larger stocks

of human capital export relatively more in skill-intensive industries has received support in the

literature, see Romalis (2004). In previous work (Bombardini et al., 2012b, henceforth BGP) we

build on this line of research and argue that the second moment of the distribution of skills also

determines comparative advantage. In particular, we find that the degree of skill dispersion has a

quantitative impact on trade flows similar to that of the aggregate endowment of human capital.

This paper presents a multi-country multi-industry model that shows how skill dispersion generates

comparative advantage and thus provides a theoretical underpinning to the empirical evidence in

BGP.

Why would the skill distribution matter for specialization and trade? We argue that industries

vary in the degree of substitutability of workers’ skills in the production process. In particular,

some industries, such as aerospace or engine manufacturing, require completing long sequences of

tasks and poor performance at any single stage greatly reduces the value of output. These are

industries with low skill substitutability, or O-ring as in Kremer (1993), where efficiency improves

when workers of similar skills are employed in every stage of production. In other industries, such

as apparel, teamwork is relatively less important, as skills are more easily substitutable and poor

performance in some task can be mitigated by superior performance in others.

We investigate theoretically whether countries with greater skill dispersion specialize in indus-

tries characterized by higher substitutability of skills across tasks. We build a model with many

countries and many industries. Countries only differ in the distribution of skills in the labor force,

while industries only differ in the degree of skill substitutability in the production process. At the

2



micro level, our framework features worker heterogeneity and non-linear returns to scale; however,

at the industry level, it is isomorphic to a perfectly competitive model with CRS and technological

differences across many countries and industries, as in Costinot et al. (2012).

We develop the central argument in a benchmark framework in which skills are not observable

by firms, adapted from Akerlof (1970). Skill unobservability is not an unusual assumption in the

literature, see for example Grossman and Maggi (2000), Grossman (2004) and Helpman et al.

(2010).1 This modelling choice is motivated by the facts, documented in BGP, that (i) observable

characteristics of workers, including age and education, account for a minor share of total variation

in work-related literacy scores within countries; and (ii) groups of observationally similar workers

exhibit very different degrees of skill dispersion across countries.2 One immediate advantage of this

approach is tractability in a setting with many countries and many sectors. Essentially, under skill

unobservability, every worker is indifferent between employment in any two firms because there is a

single (type-independent) wage that clears the labor market. In equilibrium, workers are randomly

matched to firms and thus the latter inherit the skill distribution prevailing in the economy -i.e.

the distribution of workers’ unobservable skills in every firm is identical to the distribution of

unobservable skills in the country.

The results in the benchmark model carry over with minor qualifications when cross-country

differences in observable skills are introduced in the analysis. When firms can observe some compo-

nents of skills, the equilibrium features sorting on observable skills by industry. As in the benchmark

model, however, we show that unobservable skill dispersion fully determines the pattern of trade in

1In Grossman and Maggi (2000) and Helpman et al. (2010) firms can observe a component of individual skills
before hiring workers. There remains, however, another component which firms never observe. We introduce a similar
extension in Section 6. In Grossman (2004), as in this paper, individual skills are unobservable by firms and the
production process features imperfect skill substitutability.

2Naturally, firms are likely to be able to observe the skills of their employees more accurately than econometricians.
Therefore, these facts should be interpreted as playing a motivational role for our modelling approach, and not as
precise descriptions of the degree of uncertainty that firms face regarding the skills of their employees.
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equilibria with wage equalization across-countries. In light of this result, the benchmark model is

best interpreted as a mechanism illustrating how the dispersion of skills among workers with oth-

erwise identical observable characteristics affects comparative advantage. In the rest of the paper,

we thus sometimes refer to unobservable skills as ‘residual’ skills.

We show that the interaction of skill dispersion and skill substitutability generates differences in

output per worker across industries and countries, driving the pattern of international trade. The

central result of the paper establishes conditions under which countries with a high dispersion of

skills in the labor force are relatively more productive, and thus export relatively more, in sectors

where skills are more easily substitutable across tasks. Interestingly, we also show that the effects of

skill dispersion on output and specialization are isomorphic to the effects of technological differences

in Ricardian models, such as Costinot et al. (2012). In this sense, our work has implications for

the quantitative assessment of Ricardian comparative advantage since cross-country differences in

measured total factor productivity can arise as the by-product of differences in the distribution of

factor endowments.3

The theoretical framework developed in this paper can also be used for quantitative analysis.

Using distributions of literacy scores from the International Adult Literacy Survey (IALS), we

construct productivity differences attributable to skill dispersion. Cross-country differences in

trade costs are calibrated to match bilateral trade flows at the industry level. We use the numerical

counterpart of the model to carry out a quantitative assessment of the impact of skill dispersion

on trade patterns. In particular, we measure the general equilibrium responses in industry-level

trade when cross-country differences in skill dispersion are eliminated. These experiments, which

3Costinot et al. (2012) argue that their exogenous productivity differences aim to capture factors such as climate,
infrastructure, and institutions, which affect the productivity of all producers in a given country and industry. To the
extent that the distribution of human capital endowments – above and beyond observable credentials – is the product
of a country’s social structure and norms, our explanation would pertain to the institutional view of comparative
advantage.
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we run under a variety of technology parametrizations, suggest a significant role of skill dispersion

on trade flows, with different effects on different countries.

This paper is related to recent theoretical research studying how skill distributions influence

the pattern of trade. The hypothesis that skill dispersion may lead to specialization was first

put forth by Grossman and Maggi (2000) in the context of a two-country, two-sector model, with

competitive labor markets and constant returns to skills. They show that, when skills are fully

observable, cross-country differences in skill dispersion do not generate comparative advantage

when production technologies display convex isoquants in worker skills.4 Gains from trade do not

exist because, in equilibrium, workers of identical abilities are paired together, i.e. self-matching

prevails in every industry, making skill dispersion irrelevant.5 Grossman and Maggi (2000) also

consider the case in which a portion of individual skills is unobservable. As in our paper, workers

(with identical observable skills) are randomly matched to firms. Although they show that skill

dispersion generates gains from trade when both industries have convex isoquants, they cannot

determine the resulting pattern of trade across countries, which is the main focus of this paper.6 In

order to make progress, we propose a specification of production technologies that gives us sufficient

tractability to handle a wide range of substitution elasticities, i.e. varying degrees of concavity or

convexity of the isoquants, in a parametric way. In combination with random matching, this

assumption allows us to characterize the variation in productivity differentials arising from skill

dispersion, across multiple countries and industries, which is the crucial step in pinning down the

pattern of trade.

4Supermodularity implies that the marginal product of any worker is increasing in the ability of the co-worker.
Submodularity of the production function implies the opposite.

5In the case of observable skill dispersion, gains from trade are conditional on the existence of a supermodular
sector, where self-matching prevails, and of a submodular sector, where the most skilled workers are paired with the
least skilled co-workers, i.e. cross-matching prevails. In this case, the country with a more dispersed skill distribution
specializes in the submodular sector.

6When one sector displays convex isoquants and the other displays concave isoquants, they show that unobservable
skill dispersion reinforces the pattern of trade induced by observable skill dispersion.
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Interest in the relevance of skill distributions for trade is relatively recent. Ohnsorge and Trefler

(2007) propose a Roy-type model with two-dimensional worker heterogeneity to show that, when

each worker represents a bundle of two skills, the correlation of the two in the population determines

comparative advantage. Grossman (2004) starts from the premise that, in some sectors, incomplete

contracts make it difficult to tie remuneration to an individual worker’s output. In a country

with high skill dispersion highly skilled individuals prefer to sort into sectors where individual

performance is easier to measure, rather than working in an industry where the common wage is

dragged down by workers with relatively low skills. This type of endogenous sorting results in

comparative advantage. Finally, in Bougheas and Riezman (2007) comparative advantage emerges

from differential returns to skills across sectors.

The next section describes consumer preferences, production technologies and the labor market.

Section 3 discusses how unobservable skill dispersion generates productivity differences across coun-

tries and industries, driving comparative advantage. Section 4 studies the optimization problem of

individual firms. Section 5 analyzes the implications of skill dispersion for the pattern of interna-

tional trade. Section 6 introduces observable skills in the model. Section 7 presents the quantitative

analysis and our counterfactual results. The paper ends with some concluding remarks.

2 Setup

2.1 Preferences

Countries are denoted by a subscript c ∈ {1, ..., C}, which is dropped when it creates no ambiguity.

Each country c is populated by a measure Lc of individuals. Utility of the representative consumer

depends on the consumption of differentiated goods Qi with i ∈ {1, ..., I}. The utility function U
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is Cobb-Douglas:

logU =

I∑
i=1

αi logQi,

where 0 < αi < 1,
∑

i αi = 1 and Qi is an aggregate consumption index over a fixed set Ωi

of varieties of i. Preferences exhibit constant elasticity of substitution σi across varieties of any

good.7 As a result, total expenditure on variety ω of good i is:

xi (ω) =

[
pi (ω)

Pi

]1−σi
αiE, (1)

where E is aggregate expenditure, pi (ω) is the price of variety ω of i, and Pi is the ideal CES price

index of Qi.

2.2 Production

Each variety ω in the differentiated industry i is produced under perfect competition and free entry.

The typical firm producing ω has to incur a fixed start-up cost of f units of the numeraire good, to

be specified below. The amount of output produced y(ω) depends on the skill level of each worker

hired a > 0, the measure of workers hired h, the distribution of skills across workers G̃ (a) and

a random productivity shock ε > 0. The distribution of skills matters for production because we

assume that skills are imperfectly substitutable. In particular, the production function depends on

the degree of substitutability λ among workers’ skills in that industry and takes the form:

y = ε

(∫
haλdG̃ (a)

) γ
λ

with 0 < γ < λ. (2)

7More specifically:

Qi =

[∫
ω∈Ωi

qi(ω)
σi−1
σi dω

] σi
σi−1

with σi > 1

where qi(ω) is the quantity consumed of variety ω of good i.
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The parameter λ ∈ Λ measures the degree of skill substitutability. The elasticity of substitution

among skill levels, for a fixed mass of workers h, is given by 1
1−λ . The set Λ ⊂ (0, 1] determines the

admissible range of substitutability. A key assumption is that each industry i is characterized by

a different value of λ in production, and therefore by a different degree of substitutability among

workers’ skills. Since λ is the only characteristic that distinguishes technology across industries,8

in the remainder of the paper we drop subscript i and index industries by their corresponding

parameter λ.

Note that when skills are perfectly substitutable (that is, λ = 1) output depends on the average

skills of workers but not on higher moments of the skill distribution and skill dispersion does not

generate comparative advantage. In what follows, we exploit this natural property of the model to

enhance the tractability of the analysis. In particular, we show that, if there is an industry with

no transport costs, λ = 1 and no intra-industry goods’ heterogeneity, equilibria with incomplete

specialization display wage equalization across countries.9 Throughout we assume that 1 ∈ Λ and

use Λ−1 to denote the set of industries with imperfect skill substitutability; i.e. Λ−1 = Λ \ {1}.

In order to obtain a clear-cut characterization of the impact of skill dispersion on bilateral trade

flows at the industry level, we introduce intra-industry heterogeneity in industries with imperfect

skill substitutability, as in Costinot et al. (2012). In particular, for industries λ ∈ Λ−1, the Ricar-

dian productivity shock ε = ε(ω) is assumed to be an i.i.d. variety-specific draw from a Fréchet

distribution F (ε) = exp
[
−ε−θ

]
for ε > 0, with θ > 1. As mentioned, we assume that the distri-

bution of ε is degenerate when skills are perfectly substitutable and set ε(ω) = 1 for all varieties

in industry λ = 1. Importantly, these Ricardian shocks are identical across countries and therefore

do not generate comparative advantage in the model.

8The parameter γ is constant across industries and does not affect comparative advantage.
9The industry λ = 1 therefore plays a similar role to a homogeneous sector in many trade models.
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Two properties of this production function are worth mentioning. First, every worker has a

positive marginal product: in particular, the marginal product of adding worker h of skill level

ah is εh
γ
λ
−1
(∫

aλdG̃ (a)
) γ
λ
−1

γ
λa

λ
h. Second, the parameter γ controls the return to the mass of

workers, given λ and the skill distribution. In this setting with price taking and fixed costs,

decreasing marginal returns in every industry are necessary for the existence of an equilibrium with

free entry.10 In what follows, we restrict Λ to ensure γ < λ.11

2.3 Labor Market

We model an environment with informational asymmetries, adapted from Akerlof (1970). Workers

are characterized by different skill levels. Skill is a continuous variable distributed in the population

of country c according to a distribution function Gc (a) with support [amin, amax], where amax >

amin > 0. Importantly, skills are unobservable by the firms. A competitive equilibrium thus consists

of a single wage rate wc, independent of worker types, that clears the labor market.

Since the opportunity cost of accepting employment is the same for every worker, decisions to

participate in the labor market are independent of the wage rate and a worker’s type. Moreover,

since every firm offers the same wage, it follows that every worker is indifferent between any two

jobs in the economy. As a result, there is no sorting between workers and firms in equilibrium. This

implies that every firm, in any industry λ and country c, inherits the residual skill distribution in

10Note that the return to the mass of workers also depends on λ and therefore varies across industries. However,
as the analysis in section 5 shows, this effect plays no role in shaping comparative advantage in equilibria with wage
equalization across countries.

11Relative to Grossman and Maggi (2000), here the emphasis is on the degree of substitutability across sectors and
not on whether the production function is submodular or supermodular. In fact, because we introduce sufficiently
strong decreasing returns, our production function is always submodular. We should stress though that this is
inconsequential for the case of unobservable skills. The crucial factor is the degree of substitutability across sectors,
which, in the case of only two tasks would be easily represented graphically by the curvature of the isoquants. Notice
that, differently from Grossman and Maggi (2000), here isoquants may be convex even with a submodular production
function (this is possible when we remove the crucial assumption of constant returns to talent present in Grossman
and Maggi (2000)). This topic is explored in Bombardini et al. (2012a).
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the labor force:

G̃ (a) = Gc (a) .

There are a few considerations to make about random matching. First, as will become clear

below, random matching allows us to study the essential implications of unobservable skills for com-

parative advantage within a tractable general equilibrium framework. More sophisticated forms of

imperfect matching would result if screening or signalling technologies were introduced into the

model. In general, these extensions would come at the cost of analytic solutions. However, our

analysis in section 6 can be interpreted as an attempt to partially relax these assumptions while

keeping sufficient tractability. When worker skills are modelled as the product of two components,

one of which is observable by firms, we can think of either (i) firms having access to a costless

screening technology that allows them to identify some specific dimension of worker skills or, alter-

natively, (ii) workers that can credibly and costlessly signal some of their skills. Second, our focus

is mainly on unobservable skills because this case has received relatively less attention in the litera-

ture and, as we show below, it can generate patterns of comparative advantage that are consistent

with the empirical evidence in BGP. In section 6, we show that the results of this benchmark setup

are robust when cross-country differences in observable skills are introduced in the analysis.

3 Skill Dispersion as Comparative Advantage

This section shows how cross-country differences in the distribution of residual skills generate

comparative advantage. To facilitate the discussion we write the production function in (2) as

y = εA (λ, c)h
γ
λ where the factor A (λ, c) is defined as:

A (λ, c) ≡
(∫

aλdGc(a)

) γ
λ

. (3)
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We refer to A (λ, c) as ‘fundamental productivity’, although it is not the result of countries

having access to different technologies. The magnitude of A (λ, c) depends on the combination of

a country-specific skill distribution and an industry-specific level of skill substitutability in pro-

duction. Therefore, unlike the i.i.d. technological shocks captured by ε, fundamental productivity

varies systematically across countries and industries and, as section 5 shows, it is the sole de-

terminant of the pattern of comparative advantage in this model. The goal of this section is to

understand how variation in A (λ, c) is affected by the distribution of skills.12

Motivated by the empirical evidence presented in BGP, we explore the conditions under which

countries with higher skill dispersion have a comparative advantage in sectors with higher skill sub-

stitutability. Property 1, stated below, provides a general condition for this pattern of comparative

advantage to emerge from differences in the distribution of skills.13

For simplicity we compare countries that have the same average skills, but different dispersion.

We order countries so that, if c < c′, then country c′ is characterized by a skill distribution Gc′(a)

which is a mean-preserving spread of the skill distribution Gc(a) in country c.

Property 1 A (λ, c) is strictly log-supermodular in λ and c, i.e. for any λ, λ′ ∈ Λ and c,

c′ ∈ {1, ..., C} such that λ < λ′ and c < c′:

A (λ, c′)

A (λ, c)
<
A (λ′, c′)

A (λ′, c)
. (4)

Property 1 states that the fundamental productivity of firms in countries with high skill dispersion

will be relatively larger in high substitutability sectors.

A general result of this type cannot be established for all skill distributions. We therefore

12Although in a different context, Benabou (2005) analyzes the related issue of endogenous technological choice as
a function of the degree of skill dispersion in the population.

13It is important to notice that the patterns of comparative advantage and trade are always fully determined in
this model once skill dispersion and substitutability have pinned down an arbitrary A (λ, c) function, regardless of
whether Property 1 holds or not.
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provide three different approaches to studying this problem. First, we show that comparative

advantage can be established for any distribution with an upper-bounded support by appropriately

restricting the admissible range of substitutability. Second, we perform comparative statics for

specific distributions of skills that do not satisfy the sufficient conditions of the first approach.

Finally, we use the empirical distributions of IALS scores in 19 countries to check numerically

whether Property 1 holds when λ is allowed to vary over a wider range, relaxing the condition

λ ≤ 1.

Our first approach yields a general result for skill distributions with bounded supports, that

relies on restricting the admissible range of skill substitutability.14

Proposition 1 Property 1 holds under the following sufficient conditions:

(i) the skill distribution in any country is supported on a bounded interval [amin, amax], where

amax > amin > 0;

(ii) the set of admissible substitutability satisfies Λ ⊂ [λmin, 1] where 0 < λmin < 1, implicitly

defined by

log amax =
2λmin − 1

(1− λmin)λmin
.

Figure 1 displays the admissible range of substitutability for an arbitrary skill distribution Gc(a)

with bounded support. The lower bound on substitutability is a function of the upper bound of

the skill distribution, λmin(amax), as defined in Proposition 1. As amax increases, the lower bound

on the admissible substitutability restriction becomes tighter, meaning that comparative advantage

can be established for sets of industries with relatively higher skill substitutability in production.

This means that Property 1 will not hold for some highly concave functions if the distribution of

skills has a sufficiently large upper bound, a somewhat counterintuitive result which we further

14Imposing some upper bound on a is a reasonable restriction, as it only rules out the existence of infinitely
productive workers.
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discuss at the end of this section.

Figure 1: Admissible susbstitutability for bounded skill distributions
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Our second approach to studying Property 1 relaxes the conditions on substitutability at the cost

of concentrating on specific parametric distributions. We consider continuous distributions that are

characterized by at least two parameters (in order to be able to consider mean-preserving increases

in dispersion) and are defined on a positive support. In the appendix, we show that if skills are

distributed according to a Log-normal distribution then, if country c and c′ are characterized by skill

distributions Gc(a) and Gc′(a) such that Gc′(a) has equal mean and higher variance than Gc(a) and

if λ < λ′ then Property 1 holds. A similar result is established for the Pareto distribution. Besides
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these analytical results, we have also numerically computed the A’s for several other distributions,

including the uniform, triangular, gamma, beta and inverse Gaussian. For all these distributions,

and for a wide range of parameters, it was not possible to find a numerical violation of the ranking

in (4).

These analytical results provide sound support for (4) under the condition λ ≤ 1. However, in

anticipation of our quantitative exercises in section 7, where some sectors have a calibrated λ larger

than one, we check numerically whether Property 1 is verified over a wider range of λ. In particular,

we extend a numerical exercise originally presented in BGP, using the empirical distribution of IALS

test scores in 19 countries to construct A (λ, c) for an equally spaced grid of 50 different λ’s defined

over the [0.1, 5] interval.15 The data are described in Section 7. This grid covers the full range of

λ’s that we later employ in the quantitative section of the paper.16 We obtain that, when averaging

across country pairs, A(λ,c′)
A(λ,c) is increasing in λ at 96.9% of the grid points, where c′ is a country

with higher skill dispersion than c (as measured by the coefficient of variation of IALS scores).

The corresponding exercise on the [0.1, 1] interval yields a similar result, with relative productivity

increasing at 97.3% of the grid points.

As a robustness check of the relevance of Property 1 we have investigated under what conditions

a theoretical violation of the ranking could be engineered. One might expect that increasing

differences in substitutability between production technologies would result in more, rather than

less, relative advantage. Instead, Proposition 1 implies that Property 1 will not hold if some

industries have low enough substitutability in production. To make sense of this result we rely on

findings pertaining to choice theory and risk aversion, due to Ross (1981). He shows that, if one

adopts the Arrow-Pratt definition of risk aversion (essentially a measure of concavity), there exist

15In contrast, BGP uses a grid of λ’s defined over the [0.1, 1] interval.
16The only exception is one large outlying λ in the parametrization where γ = 0.7.

14



lotteries such that a more risk-averse individual may be willing to pay less than a less risk-averse

individual in order to avoid an increase in risk. The specific lottery employed as an example by Ross

can be explained in the context of our model if one reinterprets A (λ, c)γ as certainty equivalent, i.e.

the constant skill level that would make a firm as productive, and f (a) = aλ as utility function.

Starting from a skill distribution where most of the workers have low skills, with the exception

of few very talented individuals, consider adding a small amount of dispersion at the high skill

level. A sector with lower λ may counterintuitively see its certainty equivalent drop by relatively

less with such increase in dispersion. The intuition is that the increase in dispersion at very high

skills happens in a range where f (a) has relatively little curvature. Moreover, in order to avoid

an increase in dispersion, a firm in a low λ sector would have to consider lowering its certainty

equivalent in a relatively steep portion of f (a) and could be less willing to do so (relative to a

higher λ sector). Using the example by Ross it is possible to find a small set of parameters which

generate such a violation of Property 1. Proposition 1 spells out a condition which rules out this

phenomenon, by lowering the upper bound of skills to the point at which higher skill dispersion

always results in large enough output losses.

4 The Firm’s Problem

This section analyzes the optimal entry and employment choices of a typical firm producing variety

ω of good λ in country c. Under perfect competition, the price pj (ω, λ) that consumers in country

j pay for variety ω of good λ is

pj (ω, λ) = min
1≤c≤C

{µcj(ω, λ)} ,
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where µcj(ω, λ) is the unit cost of producing and delivering variety ω of good λ from country c to

country j. Therefore, firms in country c find it profitable to start production of this variety only if

they are the minimum cost suppliers in at least one of the C potential destinations. Conditioning on

this, the representative firm maximizes profits by choosing total output and allocating it across the

markets it decides to serve; that is, quantities to sell in the domestic and export markets. However,

since firms are price takers, in equilibrium prices will be such that every destination served is equally

profitable for firms producing a given variety.17 Otherwise, the firm could reallocate output across

destinations and increase profits. Let us denote this FOB price as p̂c(ω, λ). The profit maximization

problem of a producer of variety ω of good λ in country c can then be written as:

max
h

p̂c(ω, λ)ε(ω)A (λ, c)h
γ
λ − wch− f .

Alternatively we can view the firm’s problem as one of cost minimization. The combination of a

fixed cost and decreasing marginal returns to h implies that firms face a U-shaped average cost

curve. The minimum of this curve pins down the firm’s employment h∗c(λ) = fγ/ [wc (λ− γ)]

and efficient scale y∗c (ω, λ) ≡ ε(ω)A (λ, c)h∗c(λ)
γ
λ . The minimum average production cost, denoted

m∗c(ω, λ) is:

m∗c(ω, λ) = κ(λ)
(wc)

γ
λ

ε(ω)A (λ, c)
,

where κ(λ) > 0 under decreasing marginal returns.18

Under perfect competition, profit maximizing firms equate output price, p̂c(ω, λ), to marginal

cost. In turn, free entry implies that every firm produces at the efficient scale, where marginal cost

equals average cost, m∗c(ω, λ). Therefore, assuming that there is a continuum of small potential

17In particular, producer prices faced by every firm producing a given variety in the same location will be equalized
across destinations.

18Specifically, κ(λ) ≡ f
λ−γ
λ (λ− γ)

γ
λ
−1 γ−

γ
λ λ.
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entrants, the industry’s average cost function is perfectly elastic at the FOB price p̂c(ω, λ) that

satisfies the zero-profit condition p̂c(ω, λ) = m∗c(ω, λ). As a result, the industry’s unit cost of

producing and delivering variety ω of good λ from country c to country j is:

µcj(ω, λ) = τcj ·m∗c(ω, λ),

where τcj ≥ 1 is the iceberg trade cost from c to j. Two remarks are in order. First, we assume that

the industry with perfect skill substitutability features no producer heterogeneity (ε = 1) and no

transport costs. If there is positive production in this industry in all countries, then these assump-

tions imply that unit costs in this industry are equalized across countries and so are wage rates. In

summary, these assumptions yield wage equalization in equilibria with incomplete specialization.

Second, note that unit costs are inversely related to fundamental productivity. Therefore, under

Property 1, countries with higher skill dispersion will, ceteris paribus, have relatively lower unit

costs of producing varieties in industries with higher substitutability.

5 The Pattern of Trade

The analysis focuses on equilibria with incomplete specialization in production, in which every coun-

try produces positive output in every industry. As explained above, this leads to wage equalization

across countries, thus we choose labor as the numeraire and let wc = 1 for all c. As a result, the

pattern of bilateral trade is indeterminate in the industry that exhibits perfect skill substitutability.

Whenever skills are imperfectly substitutable, however, geographical specialization is determined

by the locations of the minimum cost suppliers to each destination, which are functions of trade

costs and both fundamental and random productivity shocks. We have seen how the interaction

of skill dispersion and skill substitutability generates fundamental productivity differences across
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industries and countries. This section shows how the pattern of trade is in turn fully determined

by fundamental productivity.

At the micro level our framework features worker heterogeneity and non-linear returns to scale;

however, at the industry level, it is isomorphic to the perfectly competitive model with homogeneous

workers, CRS and cross-country technological differences in Costinot et al. (2012).19 We therefore

follow their derivation of the pattern of trade.

As a first step, we provide an expression for bilateral exports in industries with imperfect skill

substitutability. For λ ∈ Λ−1, let xcj(λ) ≡
∑

ω∈Ωcj(λ) xj (ω, λ) denote the value of total exports from

country c to country j in industry λ, where Ωcj(λ) ≡
{
ω ∈ Ω | µcj(ω, λ) = min1≤c′≤C µc′j(ω, λ)

}
is

the subset of varieties exported by country c to country j in industry λ. Then,

Lemma 2 For any λ ∈ Λ−1,

xcj(λ) =

[
(wc)

γ
λ τcj(λ)/A (λ, c)

]−θ
∑C

c′=1

[
(wc′)

γ
λ τc′j(λ)/A (λ, c′)

]−θα(λ)Ej. (5)

Proof. The result follows from the proof of Lemma 1 in the online appendix of Costinot et al.

(2012), using the fact that ε(ω)
i.i.d.∼ Fréchet implies that z(ω, λ, c) ≡ ε(ω)A (λ, c)

i.i.d.∼ Fréchet

with scale parameter A (λ, c); i.e. F (z) = exp
[
− (z/A (λ, c))−θ

]
, for all z > 0. Note that κ(λ)

varies by industry, but not by country, and therefore cancels out in (5).

Intuitively, in industries with imperfect skill substitutability, the location of the minimum cost

supplier of any single variety is indeterminate because it depends on the random component of

productivity. However, because these shocks are purely idiosyncratic, a country with a higher fun-

damental productivity will, ceteris paribus, capture a higher proportion of the industry’s varieties

19In particular, production technologies in our model can be equivalently interpreted as depending on h homoge-
neous workers, with fundamental productivity equal to A(λ, c) in industry λ and country c. Furthermore, as shown
in the previous section, under free entry, industry unit costs are constant, as with CRS technologies.
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imported by consumers in any destination.

In order to isolate the role of skill dispersion in shaping comparative advantage, assume that

there are no other exogenous sources of relative cost differences across exporters, i.e. τcj(λ) =

τcj ·τj(λ) for λ ∈ Λ−1. Then, under wage equalization, Lemma 2 implies that for any importer j and

any pair of exporters c and c′, the ranking of relative fundamental productivities fully determines

the ranking of relative exports to a given market j. That is, for any two industries λ, λ′ ∈ Λ−1:

A (λ, c′)

A (λ, c)
≤ A (λ′, c′)

A (λ′, c)
⇔

xc′j(λ)

xcj(λ)
≤
xc′j(λ

′)

xcj(λ′)
. (6)

In our framework, A (λ, c) is log-supermodular in λ and c, when countries are ordered according

to increasing skill dispersion. This yields the main result of the paper linking skill dispersion,

comparative advantage and trade flows.

Proposition 3 Consider an equilibrium with incomplete specialization in production, in which skill

dispersion is the only source of relative cost differences across countries, i.e. τcj(λ) = τcj · τj(λ)

for λ ∈ Λ−1. Then, under Property 1, a country with relatively higher dispersion of skills has a

comparative advantage, and therefore exports relatively more to any destination, in sectors with

higher substitutability λ ∈ Λ−1.

Proof. It follows immediately from Property 1 and the ranking of relative exports in (6).

We now briefly explain how to solve for the remaining endogenous variables of the model. The

mass of firms in industries with imperfect skill substitutability, denoted Mc(λ), can be determined

from the market clearing condition that total expenditure on a given industry’s varieties equals the

sum of the revenues of domestic producers of these varieties. Under wage equalization, equilibrium

firm revenues are h∗ (λ) + f , obtained from section 4. Therefore, the market clearing condition
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in industry λ ∈ Λ−1 can be written as
∑

j xcj (λ) = Mc (λ) [h∗ (λ) + f ], which, together with the

solutions for trade flows (5), can be used to solve for Mc(λ) as a function of expenditure levels

Ec. The allocation of labor in this industry, denoted Lc(λ), satisfies Lc(λ) = Mc(λ) [h∗ (λ) + f ].

In turn, the allocation of labor in the industry with perfect skill substitutability is Lc(1) = Lc −∑
λ∈Λ−1

Lc(λ), ensuring full employment.20 From this, we can compute the mass of firms and total

exports to the rest of the world, Mc(1) and
∑

j xcj (1), using the solution for h∗ (1) and imposing

market clearing. Finally, aggregate expenditure levels are obtained by imposing the equality of

income and expenditure in every country, so that Ec =
∑

λ∈Λ

∑
j xcj (λ) for all c = 1, ..., C.

6 Observable skills

This section extends the model to account for observable skills. The equilibrium features sorting by

industry on observable skills. As in the benchmark model, however, unobservable skill dispersion

fully determines the pattern of trade in equilibria with wage equalization.

Suppose there are N types of workers, indexed by n = {1, ..., N}. The input of a worker i of

type n is now the product of observable and unobservable components of ability, denoted qn and

ani respectively. By definition, every worker of type n is endowed with the same skill qn, which is

observable to both firms and workers.21 Component ani, however, can vary across workers of the

same type. As before, we assume ani is unobservable to firms. The structure of the labor market is

therefore unchanged, except that the equilibrium now requires determining N type-specific market

clearing wages in each country, denoted wn,c.

20Incomplete specialization requires Lc(1) > 0 for all c, which can be ensured by appropriate choice of labor
endowments and expenditure shares across countries.

21One possible interpretation is that n indexes education-experience cells and qn is the expected value of the (log)
ability of workers belonging to cell n. This interpretation would require the normalization En [log (ani)] = 0 for all n.
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In this context, the technology (2) of a firm in industry λ naturally extends to:

y = ε

[
N∑
n=1

∫ hn

0
(qnani)

λ di

] γ
λ

, (7)

where hn is the number of workers of type n employed.22 Note that if N = qN = 1, we obtain (2).

Let Gn,c(a) be the distribution of unobserved skills of type n in country c. To keep matters

as close to the benchmark model as possible, we assume that unobservable skills are identically

distributed across skill types, i.e. Gn,c(a) = Gc(a) for every n, as in Grossman and Maggi (2000).23

Without loss of generality, we further restrict the analysis to two observable types n = {1, 2}, with

q1 < q2 and refer to type-1 and type-2 workers as unskilled and skilled, respectively. Together

with random matching on unobservable skills, these assumptions allow us to express output as

y = εA (λ, c)
[
h1q

λ
1 + h2q

λ
2

]γ/λ
, where A (λ, c) ≡

(∫
aλdGc(a)

)γ/λ
is defined exactly as in section 3.

Dropping the country and industry indices momentarily in order to lighten notation, the firm

chooses h1 and h2 in order to maximize p̂y − w1h1 − w2h2 − f . The first-order condition for hn,

n = {1, 2}, is p̂εA
[
h1q

λ
1 + h2q

λ
2

]γ/λ−1
qλn (γ/λ) ≤ wn, with equality if hn > 0.24 Note that both

first-order conditions hold with equality only in a threshold industry λ∗c , satisfying

(
q2

q1

)λ∗c
=
w2,c

w1,c
. (8)

Producers in industry λ∗c are indifferent between both types of workers so, for expositional purposes,

22Recall that in the benchmark model without observable skills, there are no skill-specific tasks, i.e. total output
is simply the integral of individual inputs aλi across employees, regardless of ai. By applying the same concept in the
present context, we obtain (7).

23Allowing for ‘heteroskedasticity’ in unobservable skills across countries implies that unobserved skill dispersion
for each type of worker operates as an independent source of comparative advantage. Although potentially relevant
in an empirical analysis, this extension would make the analysis cumbersome, without adding further insight.

24The production function is quasiconcave in (h1, h2), since we still assume 0 < γ < λ. The first-order conditions
are thus necessary and sufficient for a maximum.
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we focus on equilibria such that industry λ∗c hires skilled workers.25 Since q1 < q2, firms in industries

λ ≥ λ∗c exclusively employ skilled workers, while firms in industries λ < λ∗c exclusively employ

unskilled workers. Therefore, the equilibrium displays sorting on observable skills and random

matching on unobservable skills.26 Although the present model considers only two factors, the

result is reminiscent of the sorting pattern obtained in Costinot and Vogel (2010) with a continuum

of sectors and factors. The key similarity lies in the assumptions of log-supermodularity of the

sector-skill specific productivity in their paper and of qλ in this paper.

Since firms hire a single type of workers, the solutions to the profit maximization problem are

very similar to the benchmark model. In particular, under free-entry, it is straightforward to show

that the industry’s unit cost of producing and delivering variety ω from country c to country j, is

µcj(ω, λ) = τcj(λ)κnλ,c (wnλ,c)
γ/λ / [ε(ω)A (λ, c)], where subscript nλ indicates the type of workers

(optimally) employed in industry λ; i.e. nλ = 1 if λ < λ∗c and nλ = 2 otherwise. In turn,

κnλ,c ≡ f
λ−γ
λ (λ − γ)

γ
λ
−1γ−

γ
λλ (qnλ)−γ is a function of parameters that vary across industries and,

possibly, countries.27 Having determined unit costs, total bilateral exports at the industry level are

derived as in Lemma 2:

xcj(λ) =

[
κnλ,c (wnλ,c)

γ
λ τcj(λ)/A (λ, c)

]−θ
∑C

ć=1

[
κnλ,c′

(
wnλ,c′

) γ
λ τc′j(λ)/A (λ, c′)

]−θα(λ)Ej . (9)

As in the benchmark model, we can now establish the pattern of trade for the class of equilibria

featuring wage equalization across countries. In this case, wn,c = wn for all c together with (8)

imply that the assignment of observable skills to industries is the same in every country; i.e. λ∗c = λ∗

25We assume λ∗c ∈ Λ. This will be the case when, for example, Λ is an interval in the real line.
26Intuitively, sorting is driven by the assumption of no type-specific tasks embedded in (7) together with the fact

that returns to individual skills increase in λ.
27κnλ,c will vary across countries as long as qnλ does. This can occur when the threshold industry λ∗ differs across

countries so that, in a given industry λ, countries employ workers of different types.
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for all c. In the absence of other sources of comparative advantage, it is easy to verify that equation

(6) holds and thus relative trade flows are fully determined by unobservable skill dispersion. The

next result immediately follows from these observations, along the lines of Proposition 3.

Proposition 4 Consider an equilibrium with wage equalization across countries in the model with

multiple observable skills. Assume that transport costs are not a source of relative cost differences

across countries, i.e. τcj(λ) = τcj ·τj(λ) for λ ∈ Λ. Then, under Property 1, a country with relatively

higher dispersion of unobservable skills has a comparative advantage, and therefore exports relatively

more to any destination, in sectors with higher substitutability.

We note that wage equalization can be ensured in a similar way as in the benchmark model

and, more generally, as in standard Heckscher-Ohlin theory. That is, by an appropriate choice of

endowments and expenditure shares such that every country is incompletely specialized in a set of

N , freely traded, homogeneous goods, each employing a different type of workers.

Finally, we would like to remark that in our model, because of the assumption of wage equal-

ization across countries, observable skill dispersion is not a source of comparative advantage among

differentiated goods.28 However, the analysis in this section is not intended to provide definitive

conclusions regarding the effect of observable skill dispersion on trade flows, but rather to show

that observable skills can be incorporated into our model in a natural way, without necessarily

changing our core results regarding unobservable skill dispersion.

7 Quantitative analysis

Next, we return to the model outlined in Sections 2-5 to perform a quantitative assessment of the

effect of skill dispersion on trade flows. For this exercise we consider a set of 63 manufacturing

28Standard Heckscher-Ohlin comparative advantage may emerge in the homogeneous good sectors, in which skills
are perfectly substitutable. We do not focus on this well established result.
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industries and 18 countries for which we can observe both bilateral trade flows and the distribution

of workers’ skills.29

7.1 Eliminating cross-country differences in skill dispersion

We undertake a set of counterfactual experiments aimed at inferring how changes in comparative

advantage due to skill dispersion alter trade flows. To do so we fix a reference country and study the

general equilibrium responses of its trade flows with the rest of the world (ROW) after removing

all comparative advantage due to skill dispersion. More specifically, after choosing a reference

country 0, we set each industry’s A (λ, c) = A (λ, 0) for all the other countries c; then we solve

for the counterfactual equilibrium and we compare both exports and imports of country 0 to the

ROW, industry by industry, against those in the benchmark equilibrium for which the A(λ, c) are

constructed from data.30 Consistently with the model, and to minimize confounding effects, we

perform the quantitative analysis in a setting in which (i) wages are equalized in equilibrium, (ii)

consumers have identical preferences, i.e. α(λ, c) = α(λ) for all c, and (iii) skill dispersion is the

only source of comparative advantage. The third assumption requires τcj(λ) = τcj · τj(λ) for every

c, j and λ. Below we describe all the experiments, then we discuss their implementation.

Change in exports, by industry. Under the assumptions (i)-(iii) above, we use equation

(5) to obtain an expression for the exports of country 0 to the ROW in industry λ. Counterfactual

29Our sample of industries and countries is identical to the one studied in BGP, with the exclusion of Chile. We are
unable to measure Chilean domestic absorption rates from OECD-STAN data and thus we drop this country from
the sample (see Appendix).

30These counterfactual experiments are similar to those presented in Costinot et al. (2012) to study Ricardian com-
parative advantage, with two important differences: (i) we allow for counterfactual changes in aggregate expenditures
and, (ii) we also report results at a more disaggregated (industry) level.
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equilibrium exports, relative to those in the benchmark equilibrium, are

∑
j x
′
0j(λ)∑

j x0j(λ)
=

∑
j

τ−θ0j∑
c′ τ
−θ
c′j
E′j∑

j
[τ0j/A(λ,0)]−θ∑
c′ [τc′j/A(λ,c′)]

−θEj

, (10)

where primes denote counterfactual variables. For example, x0j(λ) and x′0j(λ) are exports from 0

to j in industry λ in, respectively, the benchmark and counterfactual equilibria. Further below we

explain how we compute equation (10) using data and, then, we use it to assess the impact of skill

dispersion on each industry’s exports.

It is also interesting to study how this ratio changes across industries. Consider any two indus-

tries λ1 and λ2; then it is easy to show that

∑
j x
′
0j(λ1)∑

j x0j(λ1)
≤
∑

j x
′
0j(λ2)∑

j x0j(λ2)
(11)

if and only if ∑
j

[τ0j/A (λ2, 0)]−θ∑
c′
[
τc′j/A (λ2, c′)

]−θEj ≤∑
j

[τ0j/A (λ1, 0)]−θ∑
c′
[
τc′j/A (λ1, c′)

]−θEj . (12)

The last expression suggests that, following a loss of comparative advantage, the decline of country

0’s relative exports is larger in industries in which this country had a relatively higher fundamental

productivity advantage with respect to the ROW. This can be seen most clearly when trade costs

are symmetric, i.e. τc′j = τ0j for all c′ and j. In this case (12) simplifies to

A (λ2, 0)θ∑
c′ A (λ2, c′)

θ
≤ A (λ1, 0)θ∑

c′ A (λ1, c′)
θ
. (13)

If the above inequality holds, country 0 has a comparative advantage in industry λ1 relative to the

ROW and, using equation 11, its counterfactual exports to the ROW should drop relatively more
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in industry λ1. For example, if we take a high skill dispersion country (e.g. the US) as country

0, its fundamental productivities in the initial equilibrium would be relatively larger (relative to

the ROW) in industries with higher λ. It follows that, when plotting
∑

j x
′
0j(λ)/

∑
j x0j(λ) as a

function of λ, we expect to observe, on average, a negatively sloping curve. The steepness of this

curve indicates the strength of CA generated by skill dispersion. In contrast, if the reference country

has low skill dispersion (e.g. Germany), that slope is expected to be positive. In the numerical

experiments below we do not assume symmetric trade costs and, therefore, we also allow for some

confounding effects.

Change in imports, by industry. Similarly, the change in imports to country 0 from the

ROW in the counterfactual equilibrium can be expressed as

∑
c 6=0 x

′
c0(λ)∑

c 6=0 xc0(λ)
=

1 + [τ00(λ)/A(λ,0)]−θ∑
c6=0[τc0(λ)/A(λ,c)]−θ

1 + τ00(λ)−θ∑
c 6=0 τc0(λ)−θ

E′0
E0

(14)

Comparing such changes in any two industries λ1 and λ2 under the hypothesis that trade costs

do not generate comparative advantage, one obtains

∑
c x
′
c0(λ1)∑

c xc0(λ1)
≤
∑

c x
′
c0(λ2)∑

c xc0(λ2)

if and only if

A (λ1, 0)θ∑
c 6=0 [τc0/A (λ1, c)]

−θ ≤
A (λ2, 0)θ∑

c 6=0 [τc0/A (λ2, c)]
−θ . (15)

This condition is similar to (13), with the difference due to the presence of trade costs. Simply put,

the condition suggests that if we take a high skill dispersion country (US) as country 0, we expect

its fundamental productivities to be relatively larger (compared to the ROW) in industries with

higher λ. Equation (15) suggests that, when plotting
∑

c x
′
c0(λ)/

∑
c xc0(λ) as a function of λ, we
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should observe a positive slope. This is quite intuitive since a positive slope means that, when the

US loses its comparative advantage in high substitutability industries, the ROW exports relatively

more to the US in those industries.31 Like before, condition (15) is informative about the slope

of relative changes in imports across industries, while the relative change within any industry is

summarized by (14).

7.2 Calibration

To perform the quantitative exercises described above one needs to assign values to a subset of

model parameters. Here we overview these parameters. Estimates and further details are deferred

to the Appendix. Once parameter values are obtained, we solve for bilateral trade flows and

aggregate expenditures in both the benchmark and counterfactual equilibria, as outlined at the end

of Section 5. This allows us to compute the numerical counterparts of expressions (10) and (14)

for our sample of countries and industries.

Technology. The crucial technology parameters in equation (2) are the industry-specific λ’s,

which determine the elasticity of substitution among workers’ skills, and γ, which controls the degree

of diminishing returns to labor, for a given λ.32 From the analysis in section 4, it is straightforward

to check that the wage bill as a fraction of firm revenue is equal to γ/λ, in industry λ.33 We

therefore use industry-level data to compute the share of labor in value added to approximate

γ/λ. The source of the data is the 2002 Economic Census and the variables employed are total

compensation34 and value added at the NAICS 6-digit level, aggregated to the 63 industries that

31In (15) the transport costs τ generate a different weighting of the A productivities for ROW and this may, in
principle, weaken somewhat the result.

32The empirical literature has so far paid little attention to the estimation of individual skills’ substitutability in
production. Most studies of heterogeneous labor demand have instead focused on coarser classifications, such young
vs old, male vs female, college vs no college. A discussion of relevant issues can be found in the original survey by
Hamermesh (1986).

33More specifically, for any variety ω of good λ, (wch
∗
c(λ)) / (p̂c(ω, λ)y∗c (ω, λ)) = γ/λ.

34Results are unaffected when employing total payroll as a measure of wage bill.
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are constructed in BGP.

For a given γ, the procedure described above allows us to pin down λ in each of the 63 indus-

tries considered. However, implementing our quantitative exercises still requires assigning a value

for γ. To gauge the robustness of our results, we parametrize the technology under alternative

values of γ and then simply invert the estimated γ/λ ratios to derive the associated sets of λ’s. In

the context of our model, it is reasonable to impose a value of 1 as an upper-bound on the range

of γ. Otherwise, the calibrated lambdas would be larger than 1 in every industry, a highly im-

plausible scenario in which production technologies in every manufacturing industry have concave

isoquants.35 Therefore, we posit that γ ∈ (0, 1) and experiment with three values. Namely, we

consider a benchmark parametrization of γ = 0.5 (the middle value of the unit range) but we also

report results for γ equal to 0.3 and 0.7.36 More details about the technology parameterization are

presented in the Appendix.

Skill distributions. To approximate a country’s skill distribution we use the distribution of

IALS scores (see BGP for a discussion). We do this for 18 countries.37 Together with the estimated

lambdas, we use (3) to compute fundamental productivity measures A (λ, c) for each country c in

industry λ.

Transportation costs. The transportation costs τcj(λ) have an important role in the numer-

ical analysis, capturing all ‘residual’ sources of unmodeled heterogeneity that affect trade between

each country pair (c, j) in industry λ. We estimate τcj(λ) in two steps: first, we use the OECD-

35The ONET database studied in BGP reveals that scores of indicators of low skill substitutability, such as the
importance of teamwork, are high in many US manufacturing industries.

36In a different context, when aggregating across 67 different occupations, Hsieh et al. (2013) acknowledge the lack
of information about the elasticity of substitution and simply choose a value of 3, doing robustness checks around
this benchmark value. We take an approach similar to theirs. While their setup is different from ours, their assumed
elasticity is well within the range we allow for in our application.

37The results presented here are produced using ‘residual’ IALS obtained by regressing IALS scores on individual-
level observable characteristics, as documented in BGP. We also perform the same experiments using raw IALS scores,
and the results are qualitatively and quantitatively similar. In line with the fact that most (roughly 2/3) of IALS
variation comes from the residual component, the experiments with raw scores exhibit effects on trade flows which
are between 15 and 30 percent stronger. More details are available from the authors.
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STAN bilateral trade data at the industry level. The τcj(λ) are chosen to replicate bilateral trade

flows by industry; this results in a set of 18 × 17 × 63 elements corresponding to all country-

industry triplets. In the Appendix we describe how these trade costs are derived as a function of

bilateral trade flows in each industry. Next, we decompose (through an OLS projection) each τcj(λ)

into two multiplicative components: (1) a country-pair effect; (2) a country-industry component.

These are the two terms τ̂cj and τ̂j(λ), which we then use in the simulations. The decomposition

τ̂cj(λ) = τ̂cj τ̂j(λ) guarantees that transport costs are not a source of comparative advantage.38

Idiosyncratic variety shocks. Parameter θ, characterizing the Fréchet distribution of the

Ricardian productivity shocks ε (ω), is set to 6.53, following Costinot et al. (2012).

Preferences. To solve for an equilibrium we only need to set the expenditure share parameters

α(λ), which we assume identical in all countries. Details of how we calibrate these consumption

shares are in the Appendix.

7.3 Results

Shutting down differences in relative productivities guarantees the absence of comparative advan-

tage due to skill dispersion. However, the choice of a reference country is important in these

experiments because it affects the level of fundamental productivities’ in different industries. For

this reason we compute a battery of 18 counterfactual experiments, allowing for a different reference

country in each one of them. In what follows we plot graphs based on technology estimates obtained

using the wage shares measured through total compensation and the benchmark parametrization

of γ = 0.5. In the appendix we report results for alternative values of γ. Figure 2 plots the

percentage changes in imports and exports, setting Germany and the US as reference countries.39

38Using this decomposition of the transport costs means that the simulations do not exactly match bilateral trade
flows in each industry.

39Changes are computed like in equations 10 and 14. Exports of a country to itself are not included.
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While both countries are at similar stages of development, they are at opposite ends of the skill

dispersion range. Each square reports the proportional (percentage) change in exports or imports

for the reference country, plotted over the 63 differentiated goods’ sectors: industries on the hori-

zontal axis are ordered in terms of increasing λ (i.e. skills’ substitutability in production). In each

graph we overlay a linear fit, to emphasize the direction and steepness of the changes as the skill

substitutability parameter λ becomes larger.

Figure 2: Changes in trade flows for Germany and US: γ = 0.5

Note: the horizontal axis reports the 63 industries in order of increasing λ. The vertical axis reports the percentage

change in trade.

These plots reveal that the expected patterns of change in exports and imports are borne out

by the experiments. Export changes for the highest skill dispersion country (the US) show a

decreasing pattern as we move towards higher λ industries, while the slope of the same curve for

Germany exhibits a positive slope. The opposite is true for imports, confirming that the loss of
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comparative advantage is reflected more strongly in the sectors which most benefit from a country’s

skill dispersion in the benchmark equilibrium.

This quantitative result is further illustrated by Figure 3 which reports trade changes for the

full set of 18 reference countries. The first two rows show, respectively, proportional changes in

exports and imports by industry for the nine countries with the lowest skill dispersion. The last

two rows do the same for the nine countries with the highest skill dispersion. In each row skill

dispersion is increasing as countries change from left to right. From these plots it is apparent that,

when we equalize the A (λ, c) using reference countries at the lower end of the skill dispersion range

(like Denmark and other Nordic countries) export changes become larger as we move right towards

industries with higher λ, while the opposite is true for import changes. In contrast, when the

reference country in the counterfactual experiments have high skill dispersion like the US, the UK

or Italy, changes in trade flows by industry have slopes which are the reversed, as these countries

lose their comparative advantage in high λ industries. Interestingly, for countries in the middle

of the skill dispersion range (e.g., Hungary, Belgium, Switzerland) there is little or no slope in

the curves plotting export and import changes by industry: these are countries where comparative

advantage due to skill dispersion is generally weaker in the benchmark equilibrium. Beyond the

evolution of trade flow changes across industries, these experiments can also shed some light on

the relative intensity of the changes. To this purpose we compute for each country the average of

the absolute percentage changes in imports and exports. Table 1 reports these average absolute

changes. The table also reports the (raw, not absolute) percentage change experienced in the

industries corresponding to the 10th and 90th percentiles in the distribution of estimated λ’s. The

latter values clearly illustrate the range of variation in percentage changes.
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Table 1: Changes in trade flows (γ = 0.5)

country exports imports
(1) (2) (3) (4) (5) (6)

average 10% 90% average 10% 90%

DNK 0.93 -0.25 3.81 0.50 0.12 -1.08
NLD 0.92 -0.23 2.71 0.60 0.16 -1.92
NOR 0.59 -0.17 1.30 0.37 0.10 -1.21
FIN 0.48 -0.13 1.70 0.37 0.09 -1.04
DEU 1.03 -0.24 3.54 0.82 0.22 -2.34
SWE 0.46 -0.09 1.18 0.20 0.07 -0.60
CZE 0.56 -0.04 3.32 0.17 0.04 -0.44
BEL 0.15 -0.01 0.18 0.09 -0.02 0.32
HUN 0.22 0.01 1.54 0.04 -0.01 0.10
CHE 0.20 0.04 -0.54 0.15 -0.06 0.59
CAN 0.55 -0.18 1.85 0.40 0.18 -1.84
NZL 0.31 -0.04 0.48 0.26 0.02 -0.47
IRL 0.28 0.01 -0.41 0.08 0.02 -0.06
UK 0.54 0.22 -1.82 0.57 -0.20 2.05
USA 0.67 0.16 -1.96 0.68 -0.18 2.08
ITA 0.97 0.26 -2.00 1.44 -0.31 3.68
SVN 1.67 0.42 -4.15 0.84 -0.35 3.29
POL 2.71 0.75 -7.45 2.34 -0.73 6.46

Notes:
− Columns (1) and (3) report the average of absolute percentage changes

in trade; columns (2), (4), (5) and (6) report raw (not absolute) per-

centage changes in trade for the industries corresponding to the 10th

and 90th percentile in the distribution of estimated λ’s (skill substi-

tutability).
− The countries are ranked by skill dispersion.
− 10th percentile and 90th percentile are the 6th and 58th industries

ranked by λ’s.

These results confirm that the largest changes are experienced by countries which lie at the

opposite ends of the skill dispersion range. Changes are also more pronounced for sectors at the

extremes of the λ range, in particular for the highest values of λ. Moreover, looking at the changes

in industries at the extremes of the substitutability scale it is apparent that the signs of changes

are inverted for countries which lie at different ends of the skill dispersion range. Finally, to

summarize the individual country results, we take a weighted average of the absolute changes in

exports (imports) across countries, where weights correspond to exports (imports) shares in the
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benchmark. This results in an average change of 1.63% in exports and 1.35% in imports. These

findings are in line with our theoretical analysis and suggest a non-trivial role for skill dispersion

in determining trade flows. In the Appendix we also report results for simulations in which we

solve and perturb the benchmark under different technology parameters, in particular γ. Setting

γ to, respectively, 0.3 and 0.7 , the weighted average absolute change in exports are, respectively,

0.85% and 4.50%. To put these results in perspective, one would obtain a 5.68% average change

in absolute value of exports when using counterfactual results presented by Costinot et al. (2012)

from a similar experiment designed to quantitatively assess Ricardian comparative advantage.40

Finally, to gain a sense of the welfare implications of these counterfactuals we also computed

changes in the price index for the set of differentiated products. Under the assumption that γ =

0.5, we focused on counterfactuals involving only the highest and lowest skill dispersion countries

(respectively, Denmark and Poland). This exercise suggests that shutting down cross-country

differences in skill-dispersion would increase the price index by 0.18% when taking Denmark as the

reference country. The same exercise results in an average decrease in the price index of 0.35%

when Poland is the reference country. These results combine the effect of removing differences in

skill dispersion on comparative advantage and on the absolute level of productivity. When γ = 0.5,

many industries feature calibrated λ’s above 1, which explains why raising skill dispersion to the

level of Poland has a beneficial effect on all countries’ price indices. This effect more than offsets the

increase in the price index due to the elimination of comparative advantage when a high fraction

of λ’s are above one. The opposite happens when γ = 0.3 and most λ’s are below one (implying

convex isoquants): the Denmark experiment yields an average differentiated product price index

decrease of 0.03% for the Denmark case and an increase of 0.065% for the Poland case.

40This number is obtained by taking an un-weighted average of the absolute value of export changes presented in
column (1) of Table 7 of Costinot et al. (2012). Some caution should be exercised in comparing results since several
details of the counterfactual experiments differ across papers, including the samples of countries considered.
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8 Conclusions

Relative differences in the distribution of factors of production are central to the classical theory

of international trade. The Heckscher-Ohlin-Samuelson factor proportion model stresses the idea

that cross-country differences in aggregate factor endowments play a major role in predicting trade

flows. This paper belongs to a line of research that emphasizes that the entire distribution of a

productive factor can enhance our understanding of trade patterns.

We develop a theoretical framework where, because skills are unobservable by firms, workers and

firms are randomly matched. Skill dispersion affects industries differently because some technologies

are more capable of substituting skills across production tasks than others. All industries in each

country inherit the population distribution of unobservable skills and, as a result, firms in sectors

with lower substitutability are relatively more productive in countries with lower skill dispersion.

The paper therefore shows how differences in the dispersion of human capital inputs may lead to

‘Ricardian-looking’ differences in measured labor productivity at the country-industry level. In

Ricardian models such productivity differences are often assumed to be the result of access to

different (broadly defined) technologies. Our findings suggest that productivity wedges may also

arise as the by-product of cross-country differences in the distribution of skills, when the latter are

not properly accounted for. Higher productivity implies that countries with low unobservable skill

dispersion specialize in (and export) goods produced under low skill substitutability. This result

survives the introduction of cross-country differences in observable skills and provides a theoretical

underpinning to the empirical analysis in BGP.

Relative to the seminal contribution of Grossman and Maggi (2000) we adopt a specific pro-

duction function and we are therefore able to specify theoretical conditions under which, even in

the presence of convex isoquants in all industries, comparative advantage and the pattern of trade
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are well defined.

In a calibration exercise we show that productivity wedges associated to skill dispersion are

quantitatively important determinants of trade flows. We find that eliminating all skill dispersion

differences produces a reallocation of production and an average absolute change in exports of

almost 2%. Moreover these changes exhibit substantial heterogeneity across countries and sectors.
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A Appendix

To simplify notation we define B (λ, c) such that Bγ (λ, c) = A (λ, c). It is immediate to show that

B (λ, c) is log-supermodular if and only if A (λ, c) is log-supermodular. Proof are conducted in

terms of B (λ, c) for notational simplicity.

A.1 Proof of proposition 1

By definition of log-supermodularity we need to prove that, if Gc′(a) is a mean-preserving spread

of Gc(a), then:
∂ logB (λ, c)

∂λ
≤ ∂ logB (λ, c′)

∂λ
.

The partial derivative has the following expression:

∂ logB (λ, c)

∂λ
=

1

λ

∫
aλ log(a)dGc(a)∫

aλdGc(a)
− 1

λ2
log

(∫
aλdGc(a)

)
(A-1)

A mean-preserving spread of g (a, c) increases the second term of the right-hand side of (A-1)

by definition, since aλ is a concave function. A sufficient condition for the first term of (A-1)

to increase with a mean-preserving spread in g (a, c) is that k (a) = aλ log a is a convex function

which is verified if its second derivative with respect to a is positive for every value of a. i.e.

log a < 2λ−1
(1−λ)λ . Note that the right-hand side of this inequality is continuous and increasing in λ,

and limλ→1
2λ−1

(1−λ)λ = ∞. Then, if a is bounded above by amax, there exists a value λmin < 1 such

that log amax = 2λmin−1
(1−λmin)λmin

. If λ > λmin then ∂ logB(λ,c)
∂λ increases with a mean preserving spread

of g (a, c).

We conclude that given an upper bound on the support of the skill distribution amax, we can

find a value λmin satisfying 0 < λmin < 1 such that A (λ, c) is log-supermodular in λ and c, for

λmin ≤ λ ≤ 1. This completes the proof of Proposition 1.

A.2 Property 1 when Skill Distributions are Log-Normal or Pareto

(i) Pareto Distribution - Under the assumption that skills follow a Pareto distribution with mean

µ and standard deviation σ, B takes the following expression:41

B =
µ2 + σ2 − σ

√
µ2 + σ2

µ

(
σ +

√
µ2 + σ2

σ +
√
µ2 + σ2 − λσ

) 1
λ

.

41The Pareto distribution is characterized by a shape parameter k and location parameter amin, i.e. the cumulative

distribution of ability is given by G (a) = 1 −
(
amin
a

)k
with amin > 0 and k > 2. We could have written B as a

function of those parameters: B = amin

(
k

k−λ

) 1
λ

. Since we are interested in a mean-preserving increase in variance,

we express the B as a function of µ and σ, which are related to shape and location parameters according to the
following equations:

amin =
µ2+σ2−σ

√
µ2+σ2

µ
, k =

σ+
√
µ2+σ2

σ
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Since B is twice differentiable in σ and λ, the result in Proposition 4 is equivalent to B being

log-supermodular in λ and σ, that is ∂2 logB
∂σ∂λ > 0. The expression for the cross partial derivative is

the following:

∂2 logB

∂σ∂λ
=

σ
(√

µ2 + σ2 − σ
)

√
µ2 + σ2

[
σ (1− λ) +

√
µ2 + σ2

] . (A-2)

λ < 1 ensures B is log-supermodular in λ and σ.

(ii) Log-Normal Distribution - If the distribution of skills a is lognormal on the support [0,∞]

with mean µ and standard deviation σ then B takes the following form:

B = e
log µ− 1−λ

2
log
(
σ2

µ2 +1
)
.

It is easy to show that under this distribution, B is log-supermodular for every λ > 0 since the

following expression is always positive:

∂2 logB

∂σ∂λ
=

σ

µ2 + σ2
.

A.3 Numerical Implementation

In what follows we describe how we parameterize the model and how we solve for an equilibrium.

Preference shares. We assume that preferences are homogeneous across countries. To mea-

sure these shares we proceed in three steps: first, we use OECD-STAN data to approximate, for

each country, the relative share of consumption in each of the 63 goods (industries). Second, we

average each industry’s shares across countries and obtain a common set of 63 values for α(λ). To

simulate trade flows we need the preference share for the non-differentiated good (i.e., the good

produced by the industry in which λ = 1 and there are no transport costs). This latter sector is

only added for convenience in the model and cannot be related to a direct data counterpart. The

(unobserved) consumption share of the non-differentiated good (the one produced by the industry

in which λ = 1) can be obtained as a by-product of the general equilibrium solution and we set

it at the lowest value which guarantees: (1) trade equilibrium, with no deficits or surpluses; (2)

incomplete specialization.42

In what follows we provide some details about the individual steps. As we mentioned, the first

step is to use OECD-STAN data to derive country-specific preference shares in each industry λ.

We denote the expenditure share spent on each differentiated good λ by country j as αj (λ) and

compute it as follows:

αj (λ) =
xjj (λ) +

∑
c 6=j xcj (λ)∑

λ

[
xjj (λ) +

∑
c 6=j xcj (λ)

]
42Note that we set this share to the lowest possible value such that there is imperfect specialization in both

benchmark calibration and experiments.
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where xjj (λ) is the consumption of good λ produced in j. In turn xjj (λ) is calculated as:

xjj (λ) =

(
1

IPRj (λ)
− 1

)∑
c6=j

xcj (λ)

where IPRj (λ) =
IMPj(λ)

PRODj(λ)+IMPj(λ)−EXPj(λ) . Data on production PRODj (λ), imports IMPj (λ)

and exports EXPj (λ) is from the OECD-STAN database. Whenever import penetration ratios

(IPR) are not between zero and one, we replace them with their average across sectors for the same

country.

Then, for each industry j we average across countries, weighing by population. This results in

63 different values (a set {α (λ)} for λ = 1, 2, ..., 63) which we use as the common preference shares

in all countries.

Estimating the preference share parameter for the non-differentiated (residual) good (the in-

dustry with no trade costs and λ = 1) requires an extra step because there is no data which can

be used to measure the share of consumption in this industry. In what follows we superimpose the

symbol “˜” to a model variable if it indicates its observed data value. We use the fact that, by

definition,

αcλ=1 =

∑
j
xjc(λ = 1)

Ẽc

Clearly we cannot observe
∑
j
xjc(1) from data. However we can derive it using the following

equilibrium conditions,

WL̃c =
∑
j
xcj(λ = 1) +

∑
λ 6=1

∑
j
x̃cj(λ) (A-3)

∑
j xcj(λ = 1) +

∑
λ 6=1

∑
j
x̃cj(λ) =

∑
j xjc(λ = 1) +

∑
λ 6=1

∑
j
x̃jc(λ) (A-4)

From equation A-3 it is possible to see that, given some W1, we can identify
∑
j
xcj(λ = 1); this

can be used, in turn, in equation A-4 to obtain an estimate of
∑
j
xjc(λ = 1). As discussed in the

paper, W is constant across countries in equilibrium. Moreover there are infinitely many triplets of

W ,
∑

j xcj(λ = 1) and
∑

j xjc(λ = 1) which satisfy equations (A− 3, A− 4). We pick the W which

guarantees incomplete specialization in the benchmark equilibrium. More specifically, suppose that

country c∗ has the largest observed exports per worker in the differentiated goods sector (that is,

the highest value
∑
λ 6=1

∑
j
x̃c∗j(λ)/L̃c

∗
). Then, we assume that W =

∑
λ 6=1

∑
j
x̃c∗j(λ)/L̃c

∗
, meaning

that country c∗ only produces an infinitely small amount of output in industry λ = 1. Since W is

constant across countries, we can recover
∑
j
xcj(λ = 1) for all the other countries using equation

(A-3) and then verify that none of them is less or equal zero. In this way we also derive, using

(A-4) for each country, the value of
∑
j
xjc(λ = 1) and, given Ẽc, we can estimate αcλ=1. Finally we

average out these estimates to compute the common, economy-wide αλ=1, which is used to simulate
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the economy. Note that the 63 αj for the differentiated goods’ sectors are rescaled by (1− αλ=1),

so that
∑63

j=1
αj

(1−αλ=1) + αλ=1 = 1.

Transport (residual) costs. The transport cost capture all residual heterogeneity underlying

observed trade flows. We obtain estimates of the τcj (λ) values in two steps: first, we use the fact

that any ratio of transport costs in the differentiated goods’ sectors can be expressed as a function

of observed bilateral trade flows; that is,

x̃jj(λ)

x̃cj(λ)
=
τjj(λ)−θ

τcj(λ)−θ
=

1

τcj(λ)−θ

where the transportation cost of any country j to itself, τjj(λ), is normalized to one. Therefore,

one can recover the transportation costs of any country pair in a given industry by solving τcj(λ) =(
x̃jj(λ)
x̃cj(λ)

) 1
θ
, where the right hand side values are taken from data.43 The estimated transport costs

serve the purpose of a model residual, capturing any remaining source of trade flow variations which

cannot be explained by the explicitly modeled sources of comparative advantage.

Once we have recovered transport costs for all country-pairs and industries, we decompose them

into: (i) a common country pair component τcj (equal for all industries) and (ii) a country-industry

specific term τj(λ). We do this by estimating the non-parametric regression,

log τcj(λ) = φcj + ϕjλ + ucjλ

This decomposition guarantees that transport costs do not generate comparative advantage.

The τ ’s we employ in the counterfactual are the fitted values of the above regression, namely.

τ̂cj(λ) = exp(φ̂cj + ϕ̂jλ).

Fundamental Productivities. The value of A(λ, c) for each country-industry pair is approx-

imated using the equation A(λ, c) =
(∫
aλg(a, c)da

) γ
λ where a denotes the skill level of a worker,

measured by the IALS scores. The mean skill level is normalized to one in all countries to eliminate

comparative advantage due to average skills, and g(a, c) denotes the skill distribution of country c.

The discrete version of this proxy is A(λ, c) = (
∑
a∈Λ

aλw(a, c))
γ
λ , where Λ denotes the set of possible

values a can take in the data and w(a, c) denotes the weight of workers with skill level a in country

c.

Computing equilibria and counterfactual analysis. Once we have set values for all τcj(λ),

A(λ, c) and preference shares αλ, we solve for the benchmark economy equilibrium. Assuming

we know the total expenditure of country j, Ej , the simulated bilateral trade flows in the 63

differentiated goods’ sectors xcj(λ) are given by,

xcj(λ) =
[τcj/A(λ, c)]−θ∑

c′
[τc′j/A(λ, c′)]−θ

α(λ)(1− αλ=1)Ej (A-5)

Similarly. imports and exports in the residual industry (non-differentiated goods’ sector with

43Whenever observed trade flows are zero, we set them to be a tiny positive value.
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λ = 1) can be calculated using, respectively, the condition
∑
j
xjc(λ = 1) = αλ=1Ec and the trade

balance condition in equation (A-4). With these simulated trade flows in hand, the equilibrium

wage W must be such that, for each country, the following holds

WL̃c =
∑
j
xcj(λ = 1) +

∑
λ 6=1

∑
j
xcj(λ)

The question is: how can we derive a set of country-specific expenditures Ec such that the

above conditions are not violated? It turns out that in our simple model the relative expenditures

are trivially pinned down by

L̃1

L̃c
=

∑
j
x1j(λ = 1) +

∑
λ 6=1

∑
j
x1j(λ)∑

j
xcj(λ = 1) +

∑
λ 6=1

∑
j
xcj(λ)

=
E1

Ec

In our implementation we proxy the total employment ratio between two countries by the

countries’ population ratio.44 Normalizing E1 = 1, we have that Ec = L̃c
L̃1

.

In the counterfactual analysis, we simply change A(λ, c) while keeping transport costs and pref-

erence parameters unchanged. Then, counterfactual bilateral trade flows xcj(λ) can be computed,

as long as Ej is known, using equation (A-5) and a new equilibrium can be computed again, exactly

in the way described above. This gives a counterfactual wage Wcf . However, to compare the change

in bilateral trade flows we assume that the wage in the benchmark and counterfactual economies

are the same. This can be done easily: since trade flows and wages are linear in the expenditure

E, we renormalize the countries expenditures E by a factor of W
Wcf

so that wages are equalized in

the benchmark and counterfactual equilibria.

A.4 Quantitative Analysis: Additional Results

As we mentioned in Section 7, we experiment with alternative parameterizations of the production

technologies. Every time we re-parameterize production technologies we solve for a new equilibrium,

and obtain a new set of trade costs which match trade flows. In what follows we report technology

estimates as well as results of counterfactual experiments under alternative parametrizations.

To pinpoint the values of γ and the λs we use the model restriction wλh
py = γ

λ . For each industry

we use data on total compensation (or, alternatively, annual payroll) from the 2002 US Economic

Census and divide them by value added to approximate wλh
py and, hence, the ratio γ

λ . However

these ratios do not allow us to estimate the value of γ and of all 63 λ’s. To obtain these parameter

estimates we proceed by setting γ to alternative values and then invert the γ
λ ratios to get the

associated λs. We experiment with three different values of γ: 0.3, 0.5 and 0.7. These values

guarantee that all industries have convex isoquants. Estimates of the associated λs are presented

in Table A.1, using the total compensation proxy for the wage bill. When we set γ = 0.3 we get

substantially lower values for the λs, with a value larger than one only in 14 out of 63 industries;

when γ = 0.7 all the industries have λ > 1, an admittedly extreme assumption which however helps

us provide an upper bound for the changes in trade flows.

44Results do not change if we use total workforces.
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Table A.1: Estimates of industry-specific λ values under alternative normalizations of γ

industry γ = 0.3 γ = 0.5 γ = 0.7

Agricultural chemical mfr. 1.43 2.38 3.33

Agricultural implement, construction, mining and oil field machinery mfr. 0.68 1.13 1.58

Aircraft, aerospace prod. and parts mfr. 0.62 1.03 1.44

Aluminum production and processing 0.66 1.09 1.53

Animal food, grain and oilseed milling 1.58 2.64 3.69

Animal slaughtering and processing 0.77 1.28 1.80

Apparel accessories and other apparel mfr. 0.55 0.91 1.28

Bakeries 0.80 1.33 1.87

Beverage mfr. 1.37 2.28 3.20

Cement, concrete, lime, and gypsum product mfr. 0.75 1.24 1.74

Commercial and service industry machinery mfr. 0.67 1.11 1.55

Communications, audio, and video equipment mfr. 0.79 1.31 1.83

Computer and peripheral equipment mfr. 1.04 1.74 2.43

Cut and sew apparel mfr. 0.78 1.30 1.83

Cutlery and hand tool mfr. 0.77 1.28 1.79

Dairy product mfr. 1.05 1.76 2.46

Electrical lighting, equipment, and supplies mfr., n.e.c. 0.69 1.15 1.60

Electronic component and product mfr., n.e.c. 0.87 1.45 2.04

Engines, turbines, and power transmission equipment mfr. 0.97 1.62 2.27

Fabric Mills 0.59 0.98 1.37

Fiber, yarn, and thread mills 0.51 0.85 1.19

Footwear mfr. 0.56 0.93 1.30

Foundries 0.52 0.87 1.22

Fruit and vegetable preserving and specialty food mfr. 1.26 2.11 2.95

Furniture and related product mfr. 0.62 1.03 1.44

Glass and glass product mfr. 0.66 1.11 1.55

Household appliance mfr. 0.74 1.24 1.73

Industrial and miscellaneous chemicals 0.94 1.57 2.20

Iron and steel mills and steel product mfr. 0.61 1.02 1.43

Leather tanning and prod., except footwear mfr. 0.69 1.15 1.61

Machine shops; turned product; screw, nut and bolt mfr. 0.53 0.88 1.23

Machinery mfr., n.e.c. 0.58 0.97 1.35

Medical equipment and supplies mfr. 0.80 1.33 1.86

Metalworking machinery mfr. 0.48 0.79 1.11

Miscellaneous nonmetallic mineral product mfr. 0.78 1.30 1.82

Motor vehicles and motor vehicle equipment mfr. 0.73 1.22 1.71

Navigational, measuring, electromedical, and control instruments mfr. 0.58 0.98 1.37

Nonferrous metal, except aluminum, production and processing 0.63 1.05 1.47

Ordnance and miscellaneous fabricated metal prod. mfr. 0.65 1.08 1.51

Other transportation equipment mfr. 0.84 1.40 1.96
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Paint, coating, and adhesive mfr. B46 1.04 1.74 2.43

Paperboard containers, boxes misc. paper and pulp prod. 0.70 1.17 1.64

Petroleum and Coal prod. mfr. 1.35 2.24 3.14

Pharmaceutical and medicine mfr. 1.78 2.97 4.16

Plastics product mfr. 0.70 1.17 1.64

Pottery, ceramics, structural clay and related prod. mfr. 0.63 1.05 1.47

Prefabricated wood buildings, mobile homes and miscellaneous wood prod. 0.54 0.90 1.25

Printing and related support activities 0.58 0.97 1.36

Pulp, paper, and paperboard mills 0.99 1.65 2.31

Railroad rolling stock mfr. 0.72 1.20 1.68

Resin, synthetic rubber and fibers, and filaments mfr. 1.02 1.71 2.39

Rubber prod. 0.55 0.91 1.28

Sawmills and wood preservation 0.53 0.88 1.24

Seafood and other miscellaneous foods, n.e.c. 1.44 2.40 3.36

Ship and boat building 0.56 0.94 1.31

Soap, cleaning compound, and cosmetics mfr. 1.96 3.27 4.58

Structural metals, and tank and shipping container mfr. 0.60 0.99 1.39

Sugar and confectionery prod. 1.15 1.92 2.69

Textile and fabric finishing and coating mills 0.69 1.15 1.61

Textile product mills 0.69 1.15 1.60

Tobacco mfr. 5.27 8.78 12.30

Toys, amusement, sporting goods and miscellaneous mfr., n.e.c. 0.65 1.09 1.52

Veneer, plywood, and engineered wood prod. 0.53 0.88 1.24

We have solved for alternative benchmark equilibria and studied the counterfactuals for all

the technology parameterizations described above. We report the results for technology estimates

where we set γ to either 0.3 or 0.7.45 Figure A.1 reports changes in trade flows by industry (ordered

in terms of increasing substitutability) using all 18 reference countries. The patterns confirm the

findings discussed in the main body of the paper, although the magnitude of the changes tends to

be smaller, with most of them being in the 1% range. When we instead simulate the model using

technology estimates associated to the normalization γ = 0.7 we obtain larger changes in trade

flows, as shown in Figure A.2.

Finally, for comparison, in Figures A.3 and A.4 we separately report the estimated changes in

trade flows using as reference country only Germany and the US, under technology parameteriza-

tions with, respectively, γ = 0.3 or γ = 0.7. It is apparent that the patterns of change are identical,

and the main difference is that γ = 0.7 implies larger effects, suggesting that the estimates of

the effects of skill dispersion on trade patterns presented in the main body of the paper are fairly

conservative.

45We present results based on wage bills measured through total compensation. Available from the authors are
several additional results based on wage bills measured from payroll data.
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Figure A.3: Changes in trade flows for Germany and US: γ = 0.3

Note: the horizontal axis reports the 63 industries in order of increasing λ. The vertical axis reports the percentage

change in trade.
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Figure A.4: Changes in trade flows for Germany and US: γ = 0.7

Note: the horizontal axis reports the 63 industries in order of increasing λ. The vertical axis reports the percentage

change in trade.
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Table A.2: Changes in trade flows (wage: γ = 0.3)

country exports imports
(1) (2) (3) (4) (5) (6)

average 10% 90% average 10% 90%

DNK 0.47 -0.63 0.74 0.23 0.31 -0.21
NLD 0.46 -0.59 0.54 0.28 0.42 -0.39
NOR 0.27 -0.42 0.25 0.15 0.25 -0.23
FIN 0.24 -0.31 0.33 0.15 0.23 -0.20
DEU 0.51 -0.60 0.70 0.38 0.56 -0.48
SWE 0.23 -0.23 0.25 0.09 0.18 -0.14
CZE 0.28 -0.10 0.65 0.07 0.10 -0.08
BEL 0.07 -0.03 0.01 0.06 -0.04 0.08
HUN 0.11 0.02 0.31 0.01 -0.02 0.02
CHE 0.09 0.09 -0.11 0.08 -0.14 0.12
CAN 0.32 -0.44 0.37 0.24 0.45 -0.37
NZL 0.08 -0.09 0.08 0.06 0.03 -0.06
IRL 0.10 0.00 -0.06 0.04 0.06 -0.04
UK 0.35 0.59 -0.41 0.35 -0.52 0.45
USA 0.31 0.38 -0.37 0.33 -0.44 0.40
ITA 0.43 0.65 -0.38 0.60 -0.76 0.70
SVN 0.85 1.06 -0.84 0.49 -0.87 0.65
POL 1.44 1.91 -1.56 1.12 -1.84 1.29

Notes:
− Columns (1) and (3) report the average of absolute percentage changes

in trade; columns (2), (4), (5) and (6) report raw (not absolute) per-

centage changes in trade for the industries corresponding to the 10th

and 90th percentile in the distribution of estimated λ’s (skill substi-

tutability).
− The countries are ranked by skill dispersion.
− 10th percentile and 90th percentile are the 6th and 58th industries

ranked by λ’s.
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Table A.3: Changes in trade flows (wage: γ = 0.7)

country exports imports
(1) (2) (3) (4) (5) (6)

average 10% 90% average 10% 90%

DNK 2.85 0.70 8.88 1.41 -0.34 -2.45
NLD 2.78 0.64 6.17 1.65 -0.45 -4.25
NOR 2.00 0.46 3.08 1.09 -0.28 -2.78
FIN 1.58 0.35 3.99 1.10 -0.26 -2.42
DEU 3.17 0.65 8.13 2.29 -0.59 -5.15
SWE 1.52 0.24 2.48 0.78 -0.17 -1.10
CZE 1.77 0.11 7.68 0.54 -0.10 -1.03
BEL 0.41 0.05 0.65 0.31 0.04 0.57
HUN 0.57 -0.04 3.51 0.15 0.04 0.23
CHE 0.40 -0.11 -1.18 0.53 0.17 1.33
CAN 1.84 0.50 4.01 1.30 -0.51 -3.95
NZL 1.13 0.10 1.33 0.85 -0.07 -1.41
IRL 0.82 -0.04 -1.17 0.23 -0.04 0.17
UK 1.51 -0.58 -3.64 1.63 0.53 4.27
USA 1.82 -0.47 -4.47 1.81 0.52 4.81
ITA 2.87 -0.74 -4.65 4.92 0.88 8.77
SVN 4.44 -1.16 -9.06 2.13 0.98 7.49
POL 7.30 -2.03 -15.75 6.58 2.03 14.74

Notes:
− Columns (1) and (3) report the average of absolute percentage changes

in trade; columns (2), (4), (5) and (6) report raw (not absolute) percent-

age changes in trade for the industries corresponding to the 10th and

90th percentile in the distribution of estimated λ’s (skill substitutabil-

ity).
− The countries are ranked by skill dispersion.
− 10th percentile and 90th percentile are the 6th and 58th industries

ranked by λ’s.
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